Автор работы: Пользователь скрыл имя, 20 Января 2012 в 12:22, курсовая работа
Объектом исследования являются числовые множества.
Предметом - рассмотрение методики преподавания числовых систем в средней школе.
Целью курсовой работы является выявление методических принципов способствующих эффективному усвоению теории числовых систем в школьном курсе математики.
Задачи курсовой работы:
• Анализ литературных источников.
• Анализ школьных программ и учебников
Введение………………………………………………………………………………….3
Глава 1 . Развитие понятия числа в математике…………………………………..6
1. Натуральные числа……………………………………………………………………6
1.1. Возникновение натурального числа……………………………………..6
1.2. Построение множества натуральных чисел……………………………..7
2. Целые числа……………………………………………………………………………9
2.1. Множество целых чисел…………………………………………………….9
2.2. Отрицательные числа……………………………………………………….10
3. Рациональные числа…………………………………………………………………..11
3.1. Дробные числа………………………………………………………………11
3.2. Десятичные дроби……………………..……………………………………14
4. Действительные числа………………………………………………………………..15
4.1. Иррациональные числа…………………………………………...………15
5. Комплексные числа……………………………….......................................................17
Глава 2. Методика изучения числовых систем в основной школе………………20
1. Анализ программы по математике…………………………………………………...20
2. Методика изучения натуральных чисел......................................................................24
3. Методика изучения обыкновенных и десятичных дробей…………………............29
4. Методика изучения отрицательных чисел…………………………………..............38
5. Построение множества рациональных чисел в школьном курсе математики.........40
6. Методика изучения действительных чисел …………………………………….…...41
Заключение…………………………………………………………………………..…..44
Использованная литература……………………………………………………….......45
Сейчас «асс» - аптекарский фунт.
Дроби в Древнем Египте
Первая дробь, с которой познакомились люди, была, наверное, половина. За ней последовали 1/4, 1/8 …, затем 1/3 , 1/6 и т.д., то есть самые простые дроби, доли целого, называемые единичными или основными дробями. У них числитель всегда единица. Некоторые народы древности и, в первую очередь, египтяне выражали любую дробь в виде суммы только основных дробей. Лишь значительно позже у греков, затем у индийцев и других народов стали входить в употребление и дроби общего вида, называемые обыкновенными, у которых числитель и знаменатель могут быть любыми натуральными числами.
В Древнем Египте архитектура достигла высокого развития. Для того, чтобы строить грандиозные пирамиды и храмы, чтобы вычислять длины, площади и объемы фигур, необходимо было знать арифметику.
Из расшифрованных сведений на папирусах ученые узнали, что египтяне 4 000 лет назад имели десятичную (но не позиционную) систему счисления, умели решать многие задачи, связанные с потребностями строительства, торговли и военного дела.
Вот как записывали египтяне свои дроби. Если, например, в результате измерения получалось дробное число 3/4 , то для египтян оно представлялось в виде суммы единичных дробей ½ + ¼ .
Нумерация и дроби в Древней Греции
В Древней Греции арифметику – учение об общих свойствах чисел – отделяли от логистики – искусства исчисления. Греки считали, что дроби можно использовать только в логистике. Здесь мы впервые встречаемся с общим понятием дроби вида m/n. Таким образом, можно считать, что впервые область натуральных чисел расширилась до области дополнительных рациональных чисел в Древней Греции не позднее V столетия до н. э. Греки свободно оперировали всеми арифметическими действиями с дробями, но числами их не признавали.
В Древней Греции существовали две системы письменной нумерации: аттическая и ионийская или алфавитная. Они были так названы по древнегреческим областям - Аттика и Иония. В аттической системе, названной также геродиановой, большинство числовых знаков являются первыми буквами греческих соответствующих числительных, например, ГЕNTE (генте или центе) – пять, ΔЕКА (дека) – десять и т.д. Эту систему применяли в Аттике до I века н.э., но в других областях Древней Греции она была еще раньше заменена более удобной алфавитной нумерацией, быстро распространившейся по всей Греции.
Греки употребляли наряду с единичными, «египетскими» дробями и общие обыкновенные дроби. Среди разных записей употреблялась и такая: сверху знаменатель, под ним – числитель дроби. Например, 5/3 означало три пятых и т.д.
Нумерация и дроби на Руси
Как
свидетельствуют старинные
В русских рукописных арифметиках XVII века дроби называли долями, позднее «ломаными числами». В старых руководствах находим следующие названия дробей на Руси:
1/2 - половина, полтина | 1/3 – треть |
1/4 – четь | 1/6 – полтреть |
1/8 - полчеть | 1/12 –полполтреть |
1/16 - полполчеть | 1/24 – полполполтреть (малая треть) |
1/32 – полполполчеть (малая четь) | 1/5 – пятина |
1/7 - седьмина | 1/10 - десятина |
Славянская
нумерация употреблялась в
Дроби в других государствах древности
В китайской «Математике в девяти разделах» уже имеют место сокращения дробей и все действия с дробями.
У индийского математика Брахмагупты мы находим достаточно развитую систему дробей. У него встречаются разные дроби: и основные, и производные с любым числителем. Числитель и знаменатель записываются так же, как и у нас сейчас, но без горизонтальной черты, а просто размещаются один над другим.
Арабы первыми начали отделять чертой числитель от знаменателя.
Леонардо Пизанский уже записывает дроби, помещая в случае смешанного числа, целое число справа, но читает так, как принято у нас. Иордан Неморарий (XIII ст.) выполняет деление дробей с помощью деления числителя на числитель и знаменателя на знаменатель, уподобляя деление умножению. Для этого приходится члены первой дроби дополнять множителями:
В XV – XVI столетиях учение о дробях приобретает уже знакомый нам теперь вид и оформляется приблизительно в те самые разделы, которые встречаются в наших учебниках.
Следует
отметить, что раздел арифметики о
дробях долгое время был одним
из наиболее трудных. Недаром у немцев
сохранилась поговорка: «Попасть в
дроби», что означало – зайти
в безвыходное положение. Считалось,
что тот, кто не знает дробей, не
знает и арифметики.
3.2.
Десятичные дроби.
Со временем практика измерений и вычислений показала, что проще и удобнее пользоваться такими мерами, у которых отношение двух ближайших единиц длины было бы постоянным и равнялось бы именно десяти – основанию нумерации. Этим требованиям отвечает метрическая система мер.
Она возникла во Франции как одно из следствий буржуазной революции. Новые меры должны были удовлетворять следующим требованиям:
Во Франции за основную меру длины приняли одну десятимиллионную часть четверти земного меридиана и назвали ее метром (от греческого слова «метрон», означающего «мера»). На основании измерений меридиана, сделанных французскими учеными Мешеном и Деламбром, был изготовлен впоследствии платиновый эталон метра. Число 10 легло в основу подразделений метра. Вот почему метрическая система мер, применяемая ныне в большинстве стран мира, оказалась тесно связанной с десятичной системой счисления и с десятичными дробями.
Однако следует отметить, что европейцы не первые, кто пришел к необходимости использовать десятичные дроби в математике.
Зарождение и развитие десятичных дробей в некоторых странах Азии было тесно связано с метрологией (учением о мерах). Уже во II веке до н.э. там существовала десятичная система мер длины.
Примерно в III веке н.э. десятичный счет распространился на меры массы и объема. Тогда и было создано понятие о десятичной дроби, сохранившей, однако метрологическую форму.
Например, в Китае в Х веке существовали следующие меры массы: 1 лан = 10 цянь = 102 фэнь = 103 ли = 104 хао = 105 сы = 106 хо.
Если вначале десятичные дроби выступали в качестве метрологических, конкретных дробей, то есть десятых, сотых и т.д. частей более крупных мер, то позже они по существу стали все более приобретать характер отвлеченных десятичных дробей. Целую часть стали отделять от дробной особым иероглифом «дянь» (точка). Однако в Китае как в древние, так и в средние века десятичные дроби не имели полной самостоятельности, оставаясь в той или иной мере связанными с метрологией.
Более полную и систематическую трактовку получают десятичные дроби в трудах среднеазиатского ученого ал-Каши в XV веке. Независимо от него, в 80-тых годах XVI века десятичные дроби были «открыты» заново в Европе нидерландским математиком Стевином.
С начала XVII века начинается интенсивное проникновение десятичных дробей в науку и практику. В Англии в качестве знака, отделяющего целую часть от дробной, была введена точка. Запятая, как и точка, в качестве разделительного знака была предложена в 1617 году математиком Непером.
Развитие
промышленности и торговли, науки
и техники требовали все более
громоздких вычислений, которые с
помощью десятичных дробей легче
было выполнять. Широкое применение
десятичные дроби получили в XIX веке
после введения тесно связанной с ними
метрической системы мер и весов. Например,
в нашей стране в сельском хозяйстве и
промышленности десятичные дроби и их
частный вид – проценты – применяются
намного чаще, чем обыкновенные дроби.
4. Действительные числа
4.1.
Иррациональные числа.
Еще в Древнем Египте и Вавилоне ХХ веков назад были известны так называемые несоизмеримые отрезки ( , , π…), которые нельзя было выразить отношением, относительными, рациональными числами.
Точно не известно, исследование каких вопросов привело к открытию несоизмеримости. Это могло произойти:
Речь шла об отыскании и исследовании величины, которую мы теперь обозначаем . Открытие факта, что между двумя отрезками – стороной и диагональю квадрата – не существует общей меры, привело к настоящему кризису основ, по крайней мере, древнегреческой математики.
Индийцы рассматривали иррациональные числа как числа нового вида, но допускающие над ними такие же арифметические действия, как и над рациональными числами. Например, индийский математик Бхаскара уничтожает иррациональность в знаменателе, умножая числитель и знаменатель на тот же самый иррациональный множитель. У него мы встречаем выражения:
Развивая
тригонометрию как
В
Европе существование геометрических
несоизмеримых величин в
Только
после появления геометрии
Информация о работе Методика изучения числовых систем в курсе математики основной школы