Автор работы: Пользователь скрыл имя, 21 Февраля 2012 в 10:01, шпаргалка
Работа содержит ответы на 56 экзамнационных вопросов по дисциплине "Статистика"
1. Предмет, метод и задачи статистики, как науки
2. Статистическое наблюдение, его организационные формы, способы и ошибки
3. Виды статистического наблюдения
...
56. Измерение степени тесноты корреляционной связи
K= 1 + 3,32lgN = 1,44 lnN + 1
где k - число групп; N- численность совокупности. Длину интервала рассчитывают по формуле:
Если полученная группировка не удовлетворяет требованиям анализа, то производят перегруппировку. Ряды распределения используются 8 статистике как средство систематизации и упорядочивания материалов наблюдения, для изучения структуры явлений, анализа самих распределений и колеблемости группировочного признака.
10. Графическое изображение рядов распределения
Графическое изображение рядов распределения дает наглядное представление о закономерностях распределения.
Дискретный ряд изображается на графике в виде ломаной линии – полигона распределения.
Интервальные ряды изображаются в виде гистограмм распределения (то есть столбиков диаграмм) при этом основанием каждого прямоугольника служит величина соответствующего интервала, а высотой его частотная характеристика.
Любая гистограмма может быть преобразована в полигон распределений, для этого необходимо соединить между собой отрезками прямой вершины ее прямоугольников.
При графическом изображении рядов с неравными интервалами по оси ординат
откладываются абсолютные или относительные плотности.
Поскольку , то и площадь каждого прямоугольника такой гистограммы равна частоте соответствующего интервала, а общая площадь гистограммы равна численности совокупности.
Если на графике откладываются относительные плотности , то, то площадь каждого прямоугольника равна частости соответствующего интервала, а общая площадь гистограммы равна 1.
При равноинтервальной группировке графики распределений составленные по частотам, частостям и плотностям, подобны друг другу.
Графики распределений с неравными интервалами различаются в зависимости от того, по какой частотной характеристике они строятся.
Для характеристики рядов распределения применяют так же графики накопленных частот или куммуляты. Накопленная частота – это сумма частот данного и всех предшествующих интервалов.
Куммулята позволяет определить, какая часть совокупности обладает значе-ниями изучаемого признака не превышающими заданного предела, а какая часть – наоборот – превышает этот предел.
11. Правила построения статистических графиков.
Каждый график должен содержать следующие основные элементы:
-Графический образ – геометрические знаки, совокупность точек, линий, фигур, с помощью которых изображаются статистические величины; язык графики.
- Поле графика – пространство, в котором размещаются геометрические знаки.
– Система координат – необходима для размещения геометрических знаков на поле графика.
– Масштабные ориентиры – определяются масштабом и масштабной шкалой.
Масштаб – мера перевода числовой величины в графическую.
Масштабная шкала – линия, отдельные точки которой могут быть прочитаны как определенные числа. Шкалы бывают равномерными и неравномерными. Масштаб равномерной шкалы – это длина отрезка, принятого за единицу измерения и измеренного в каких-либо определенных мерах.
12. Абсолютные величины в статистике и их виды.
Изучая массовые общественные явления, статистика в своих выводах опирается на числовые данные, полученные в конкретных условиях места и времени. Результаты статистического наблюдения регистрируются прежде всего в форме первичных абсолютных величин.
В статистике все абсолютные величины являются именованными, измеряются в конкретных единицах и, в отличие от математического понятия абсолютной величины, могут быть как положительными, так и отрицательными (убытки, убыль, потери и т.п.).
Натуральные единицы измерения могут быть простыми (тонны, штуки, метры, литры) и сложными, являющимися комбинацией нескольких разноименных величин (грузооборот железнодорожного транспорта выражается в тонно-километрах, производство электроэнергии – в киловатт-часах). В статистике применяют и абсолютные показатели, выраженные в условно-натуральных единицах измерения (например, различные виды топлива пересчитываются в условное топливо).
Стоимостные единицы измерения используются, например, для выражения объема разнородной продукции в стоимостной (денежной) форме – рублях. При использовании стоимостных измерителей принимают во внимание изменения цен с течением времени. Этот недостаток стоимостных измерителей преодолевают применением "неизменных" или "сопоставимых" цен одного и того же периода.
В трудовых единицах измерения (человеко-днях, человеко-часах) учитываются общие затраты труда на предприятии, трудоемкость отдельных операций.
С точки зрения конкретного исследования совокупность абсолютных величин можно рассматривать как состоящую из показателей индивидуальных, характеризующих размер признака у отдельных единиц совокупности, и суммарных, характеризующих итоговое значение признака по определенной части совокупности.
Поскольку абсолютные показатели – это основа всех форм учета и приемов количественного анализа, то следует разграничивать моментные и интервальные абсолютные величины. Первые показывают фактическое наличие или уровень явления на определенный момент, дату (например, наличие запасов материалов или оборотных средств, величина незавершенного производства, численность проживающих и т.д.). Вторые – итоговый накопленный результат за период в целом (объем произведенной продукции за месяц или год, прирост населения за определенный период, величина валового сбора зерна за год и за пятилетку и т.п.).
Сама по себе абсолютная величина не дает полного представления об изучаемом явлении, не показывает его структуру, соотношение между отдельными частями, развитие во времени. В ней не выявлены соотношения с другими абсолютными показателями. Эти функции выполняют определяемые на основе абсолютных величин относительные показатели.
13. Относительные величины в статистике и их виды.
Относительная величина в статистике – это обобщающий показатель, который дает числовую меру соотношения двух сопоставляемых абсолютных величин. Так как многие абсолютные величины взаимосвязаны, то и относительные величины одного типа в ряде случаев могут определяться через относительные величины другого типа.
По способу получения относительные показатели – всегда величины производные, определяемые в форме коэффициентов, процентов, промилле, продецимилле и т.п. Однако нужно помнить, что этим безразмерным по форме показателям может быть, в сущности, приписана конкретная, и иногда довольно сложная, единица измерения. Например, относительные показатели естественного движения населения, такие как коэффициенты рождаемости или смертности, исчисляемые в промилле (‰), показывают число родившихся или умерших за год в расчете на 1 000 человек среднегодовой численности.
Выделяют следующие типы относительных величин.
1. Относительная величина выполнения задания. Рассчитывается как отношение фактически достигнутого в данном периоде уровня к запланированному.
Iвып.пл. Факт \ План.
На практике различают две разновидности относительных показателей выполнения плана. В первом случае сравниваются фактические и плановые уровни. Во втором случае в плановом задании устанавливается абсолютная величина прироста или снижения показателя и соответственно проверяется степень выполнения плана по этой величине.
Относительные величины динамики, планового задания и выполнения плана связаны соотношением i=iпл.з.× iвып.пл.
2. Относительная величина динамики. Характеризует изменение уровня развития какого-либо явления во времени. Получается в результате деления уровня признака в определенный период или момент времени на уровень этого же показателя в предшествующий период или момент.
3. Относительные величины структуры. Характеризуют доли, удельные веса составных элементов в общем итоге.
4. Относительные величины координации (ОВК). Характеризуют отношение частей данной совокупности к одной из них, принятой за базу сравнения. ОВК показывают, во сколько раз одна часть совокупности больше другой либо сколько единиц одной части приходится на 1, 10, 100, 1000, ... единиц другой части. Относительные величины координации могут рассчитываться и по абсолютным показателям, и по показателям структуры.
5. Относительные величины сравнения (ОВС). Характеризуют сравнительные размеры одноименных абсолютных величин, относящихся к одному и тому же периоду либо моменту времени, но к различным объектам или территориям.
Сопоставляя показатели динамики разных явлений, получают еще один вид относительных величин сравнения – коэффициенты опережения (отставания) по темпам роста или прироста.
6. Относительные величины интенсивности. Характеризуют степень распределения или развития данного явления в той или иной среде. Представляют собой отношение абсолютного уровня одного показателя, свойственного изучаемой среде, к другому абсолютному показателю, также присущему данной среде и, как правило, являющемуся для первого показателя факторным признаком.
14. Средние величины в статистике. Степенная средняя. Средняя арифметическая. Простая и взвешенная.
Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.
Общих принципах применения средних величин.
1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.
2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.
3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.
4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.
Средние величины делятся на два больших класса: степенные средние, структурные средние.
К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.
В качестве структурных средних рассматриваются мода и медиана.
Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными.
Простая средняя считается по не сгруппированным данным: ,
где Xi – варианта (значение) осредняемого признака;
m – показатель степени средней;
n – число вариант.
Взвешенная средняя считается по сгруппированным данным ,
где Xi – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
m – показатель степени средней;
fi – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.
Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних: средняя гармоническая, если m = -1; средняя геометрическая, если m –> 0; средняя арифметическая, если m = 1; средняя квадратическая, если m = 2;
средняя кубическая, если m = 3.
Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:
В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.
Средняя арифметическая простая
взвешенная
15. Средние величины в статистике. Степенная средняя. Средняя гармоническая. Простая и взвешенная.
Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.
Общих принципах применения средних величин.
1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.
2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.