Математические слова и предложения. Развитие логического мышления при изучение элементов алгебры и математической логики

Автор работы: Пользователь скрыл имя, 03 Апреля 2012 в 06:50, дипломная работа

Краткое описание

Целью исследования является разработка методики формирования умений по теме «Алгебраический материал».

Содержание работы

Введение.

Глава I. Исторические и психолого-педагогические основы темы «Математические слова и предложения. Развитие логического мышления при изучение элементов алгебры и математической логики.»

§ 1. История возникновения математической логики и алгебры.

§ 2. Математический язык. Понятие о математических словах и предложениях.

§ 3. Анализ заданий школьного учебника второго класса. Система дополнительных упражнений на развитие логического мышления учащихся.

Глава II. Методика изучения элементов алгебры и математической логики.

§ 1. Методика изучения числовых выражений, выражений с переменными, числовых равенств и неравенств, уравнений.

§ 2. Различные трактовки введения понятий алгебры и математической логики.

§ 3. Разработка конспектов уроков по теме.

§ 4. Материал для внеклассной работы.

§ 5. Эксперимент.

Заключение.

Литература.

Содержимое работы - 1 файл

Диплом1111.doc

— 321.50 Кб (Скачать файл)

                             + 4                                           - 4

                                             ↓                                            ↑

                                            20              ――→              20      

Таким образом задуманное число – это число 8.

 

Методика работы над уравнением.

 

В соответствии с действующей программой в первом классе, рассматриваются простейшие уравнения вида: х + 3 = 7; 4 + х = 9; х – 2 = 6; 5 – х = 3.

Чтобы осознавать те изменения, которые произошли в методике обучения решению уравнений, остановимся сначала на той методике, которой учителя пользовались ранее.

Прежде всего знакомство с уравнениями каждого вида было разделено во времени. До четвертой четверти учебного года учащиеся решали только уравнения на нахождение неизвестного слагаемого. В основе решения этого вида уравнений лежало усвоение соответствующей терминологии  (сумма, слагаемые) и правила нахождения неизвестного слагаемого по сумме двух слагаемых и одному из них.

Какие же изменения внесены теперь в методику обучения решению уравнений? Прежде всего учащиеся знакомятся сразу с различными видами уравнений. Никакого  определения уравнениям не дается, однако учащихся полезно научить узнавать уравнения. Можно, например, предложить найти среди записей уравнения и подчеркнуть их: х + 3 = 5; 5 > 3; 3 + х = 7; 9 + 1 = 10; 10 –х=8.

При знакомстве с уравнением можно выделить три этапа:

I.                    Подготовительная работа;

II.                 Знакомства с уравнениями видов х + 3 = 5; 2 + х = 6; х – 4 = 5; 8 – х = 3, Решаемых способом подбора;

III.              Решение уравнений на основе знания зависимости между компонентами и результатом действий сложения и вычитания.

Первый этап начинается на уроках ознакомления с числами от 1 до 10 и включает следующие виды упражнений:

1.      Примеры с «окошками».

2.      Игра «Молчанка».

3.      Рассматриваются различные случаи состава чисел 8 и 9.

Второй этап – это знакомство с буквой х. Третий этап – учатся решать уравнения на основе знания связи между компонентами и результатами действия сложения и вычитания. Задание: реши примеры.

                                                        6 + 4 = 10                                                        7 + 2 = 

                                                        10 – 6 =                                                         9 -  = 

                                                        10 – 4 =                                                          -  = 

Следует отметить, что этот подход создает более благоприятные условия для осуществления преемственности в обучении решению уравнений в начальных классах.

 

Решение уравнений.

 

В первом классе должно быть рассмотрено решение простейших уравнений вида: х + 3 = 10; 7 + х = 9; х – 5 = 3; 8 – х = 2.

Все задачи на нахождение уменьшаемого, вычитаемого и слагаемого учащиеся должны решать арифметическим способом.

Например задача: У коли было 30 марок. В день рождения ему подарили еще несколько марок, всего у него стало 40 марок. Сколько марок подарили Коле?

Учащиеся должны понять, что если у Коли стало сорок марок, то это те тридцать марок, которые у него были,  и еще те, которые ему подарили. Выбирая действие, учащиеся могут рассуждать так: «Отложив из сорока марок тридцать узнаем сколько подарили».

При разборе этой задачи нет необходимости указывать, что 40 – это сумма, 30 – первое слагаемое, неизвестное – второе слагаемое. Достаточно, что бы учащиеся представили себе жизненную ситуацию и своими словами обосновали выбор действия. Аналогично разбираются задачи на нахождение неизвестного уменьшаемого и вычитаемого.

Таким образом в первом классе основное внимание должно быть уделено сознательности при решение задач.

 

Изменение результатов арифметических действий при изменении их компонентов.

 

Знания об изменении результатов арифметических действий при изменении их компонентов имеют важное развивающее, образовательное и воспитательное значение. Эти знания позволяют детям создать более Полное представление о каждом арифметическом действии. Применяя эти знания ученик вынужден анализировать, сравнивать, обобщать. Вес это способствует его развитию.

Приведем примеры некоторых упражнений, направленных на применение знаний об изменении результатов действий:

-         произведение 600, как можно изменить множители, чтобы получить в произведении 50?

-         как умножить число на разность между 10 и 2, не находя этой разности?

-         частное двух чисел  36, а если от делимого отнимем 1000, то в частном получим только 28. Найти эти числа.

После решения ниже приведенных примеров, ученики переходили к выражениям и равенствам с переменными.

   Ум.  3                            Ум.                                          Ум. 7                             Ум.

  Выч.                                           Выч. 5                            Выч.                                          Выч. 8

Разн. 3                            Разн. 5                            Разн. 7                            Разн. 8

Так же предлагаются упражнения содержащие сюжетные задачи, задания с отвлеченными числами, примеры на применение частных приемов вычитания.

-         Как уменьшится частное если делимое  и делитель увеличить в 5 раз?

-         На мощение тротуара пошло 640 кирпичей. Сколько кирпичей потребуется на мощение другого тротуара, в 5 раз длиннее и вдвое шире первого?

-         Как изменится сумма, если одно из слагаемых увеличить на 498, а другое на 218?

-         Уменьшите сумму чисел 210 и 70 на 50.

На основе знаний об изменение результатов действия рассматривались частные приемы вычислений.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

§3.  Разработка конспектов уроков.

 

Конспект урока на тему: «Выражения».

Цели: уточнить понятия выражение, числовое выражение, буквенное            

выражение; закреплять навыки письменных и устных вычислений; выучить счет через 5; воспитывать чувство взаимопомощи, сопереживания друг другу.

Оборудование: Учебник по математике 2 класса А. Г. Петерсон; карточки с примерами; таблицы с выражениями.

Этапы

Содержание

примечание

I орг. момент.

II устный счет

1.      Приветствие.

2.      Сообщение темы и целей.

1.      Сравните: 28 … 82; 305… 53; 904 … 940; 36 …63.

2.      Как называются компоненты при сложении? (слагаемые, сумма).

Как называются компоненты при вычитании? (Уменьшаемое, вычитаемое, разность).

3.      Чему равна сумма, если первое слагаемое равно 35, а сумма 41?

Чему равна сумма, если первое слагаемое равно 24, а второе 7?

Чему равно уменьшаемое, если вычитаемое равно 54, а разность 13?

Найдите вычитаемое, если уменьшаемое равно 72, а разность 59.

4.      Задача на логическое мышление.

Найди закономерность и вставь пропущенные числа:

 

 

 

 

Задание на карточках.

 

 

 

 

 

 

 

 

 

 

 

 

Запись на доске.

   3

    6

 

 

  15

 

 

  24

 

 

 

 

 

III новая тема.

 

 

5.      Задача: в саду  12 яблонь и 7 вишен. Денис полил 8 деревьев. Сколько деревьев ему еще осталось полить?

12 + 7 – 8 = 11 (дер.)

Как вы узнали, что осталось полить 11 деревьев? (12+7–8) – записать на доске.

Благодаря этой записи мы можем узнать сколько деревьев осталось полить, а называют ее выражением. Запишите тему урока:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV формирование навыков

 

 

 

 

 

 

 

Физ. мин.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V Д/з.

VI Итог.

Выражения.

Выражения бывают двух видов:

              Числовые                                 Буквенные

                 3 + 5              >, < , =               d – 4

              12 – 7 + 3           7 > 5                a + b + c

                  17 – 8             10 < 12                x + 9

Числовые выражения – это такие выражения, которые составлены из чисел, а буквенные – в которых встречаются буквы.

Записывают в тетрадь то, что записано на таблицах и проводят стрелки от темы.

А сейчас я допишу ответ к задачам 12 + 7 – 8 = 11 получилась такая запись, которая выражением являться не будет, а так же выражения вида: 7 > 5; 25 – 8 < 25 –3 не являются выражениями, так как в них есть знаки сравнения: >, <, =. Запишите между таблицами знаки, опустите от тему к ним стрелку и перечеркните ее.

Придумайте числовое выражение, буквенное выражение и пример который не является выражением.

Откройте учебник на стр. 19, читаем правило.

Выполняем №1 устно:

а) 15 – 9; из 15 вычесть 9; разность чисел 15 и 9; уменьшаемое 15 вычитаемое 9.

а) 15 – 9; б) а + с; в)207 + 27; г) 16 – в.

№2 письменно. Запиши выражения:

а) сумма m и n (m + n); б) Разность 200 и 48 (200- 48);         в) разность 34 и х ( 34 – х); г) сумма 3 и 18 (3 + 18).

Все ли записи являются выражениями? Какие из них буквенные, а какие числовые?

№3 Зачеркни записи, которые не являются выражениями:     8 – 2; 100 > 15; 45 – 7 + 3; 4 + 5 – 3; х + 3 = 5; с + n; 6 + 3 = 9.

 

 

Выполните действия в 1, 2 и 3 выражениях. В каждом из них после знака равно мы получили число, то есть какое-то значение, а называть мы его будем – значение выражения.

Читаем правило  на стр. 20. (Если выполнить действия, получтится число, называемое значением выражения).

Выполняем №8.

Какие из выражений имеют одинаковые значения?        480 + 20; 294 + 0; 300 – 200; 75 + 25; 480 – 2; 294 – 0;            75 – 25; 300 + 200.

Выполняем № 11. (Записывают только выражения)

Составь выражения:

а) на представление в цирк пошли 12 мальчиков и 15 девочек 2 «А» класса. Сколько всего детей этого класса пошли в цирк?

Как узнать сколько детей пошли в цирк? ( 12 + 15). Значит какое выражение мы запишем? ( 12 + 15).

б) Фокусник достал из шапки 12 красных платков и 8 синих. На сколько меньше было синих платков, чем красных?

Как узнать на сколько одно число больше другого? ( из большего вычесть меньшее). Так какое запишем выражение? (12 – 8)

в) На арену выбежали 5 пуделей, а болонок – на 3 больше. Сколько болонок на арене? ( 5+ 3).

г) в представлении приняли участие девять акробатов. Это на три больше, чем жонглеров. Сколько выступило жонглеров?

Если сказано, что было 9 акробатов, что на три больше, чем жонглеров, значит жонглеров больше или меньше? (меньше)

Как узнать сколько жонглеров? (9 – 3).

Какие это мы получили выражения? (числовые).

№7, 10, 12.

Так какие бывают выражения? Какие записи не являются выражениями? Что называют значением выражения?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решают в тетрадях.

 

 

 

 

Анализ: В учебнике Виленкина, при изучении темы «Выражения», в отличие от базовой программы, вводятся, на этом же уроке, не только числовые выражения, но и буквенные. Показано и закреплено на практике их отличие.

В учебнике предложены упражнения для формирования навыков, они очень разнообразны, содержательны, нестандартны, интересны. Благодаря этим упражнениям дети без труда осознают данную тему.

 

Конспект урока на тему: «Порядок действий в выражениях без скобок».

Цели: закреплять умение решать уравнения, задачи на увеличение числа в несколько раз и уменьшение числа в несколько раз; отрабатывать навык сравнения выражений, нахождения значения выражения; научить детей определять порядок действий в выражениях без скобок; совершенствовать навык решения задач по действиям и выражением.

Оборудование: учебник по математике 2 класса А. Г. Петерсон; таблица с названием темы; таблица с примерами; карточки для индивидуальной работы.

 

 

Этапы

Содержание

примечание

I орг. момент

II устный счет.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. Новая тема.

 

Пяти минутка

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV с/р

 

 

 

 

 

 

 

Физ. мин

V формирование навыков

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI Д/з

 

 

VII Итог

Приветствие.

 

1.      Задания для индивидуальной работы 3 ученикам:

а) реши уравнения:

10   – х = 5                      х       4

х = 10 – 5                     · 5     :5

х = 5                            -13   +13

9        – 5= 5                     · 8      :8

        5 = 5                    -26    +26

                                      30     30  

б)  сравни:

8 · 4 + 8 … 5 · 8                             4м  32см … 423м

29 · 7 … 3 · 29                                 308 см … 3м 8дм

7 · 16 … 16 + 16 + 16 + 16 +16      56 дм … 56 см

в) составь программу действий и найди значение выражения:

  30 – 4 + 21 – 8 = 39                    24 : 3 : 2 · 5 = 20

  57 + 20 – 15 – 14 = 48                36 : 9 · 6 : 8 = 3

2.      Мозговая атака.

а) Что значит увеличить в несколько раз? 

б) Что значит уменьшить число в  несколько раз?

в) Что произошло с числами в результате произведенных операций: а · 5; а + 5; а : 5; а – 5.

г) Назовите множители: 12, 14, 15, 16, 18, 20.

3.      Блиц-турнир.

а) Вчера Маша прочитала а страниц, а сегодня – в два раза больше. Сколько страниц прочитала Маша за эти дни? (а + а · 2)

б) В одно куске в м ткани, а в другом – в четыре раза меньше. Сколько метров ткани в двух кусках? (в + в : 4)

в) У Серёжи с тетрадей в клетку, а в линейку – на 6 тетрадей меньше. Сколько всего тетрадей у Сережи?            (с + (с – 6)).

г) Оля нашла в лесу n ягод земляники, к ягод она съела, а остальные разделили на три равные части: папе, маме и сестре. Сколько ягод земляники было в каждой части?          ((n – к):3).

4.      Проверка индивидуальной работы.

Второе задание является домашним и дети проверяют свою домашнюю работу. Третье задание остается на доске.

Чем правая часть отличается от левой (в третьем задании)?

В левой части присутствуют действия сложения т вычитания, а в правой умножение и деление.

    Счет пятками.

К нам в гости пришли четыре действия : ; · ; +; -. И принесли выражение: m – a : b + c · d

Какие в нем есть действия? (все четыре)

Посмотрите на человечков с действиями, они выстроились для подсказки. Как будем выполнять действия, в каком порядке?

m – a : b + c · d

Составим план действий:

1.      а : b

2.      c · d

3.      m – 1

4.      3 + 2

Решаем №3 с коментированием:

а) а · k + c · b – d : m

б) а : b · c – d · k : m

в) b · m – a : d – d + k

Так какой является тема сегодняшнего урока? (Порядок действий  в выражениях без скобок).

Читаем правилами стр. 25

Если в выражениях без скобок есть только сложение, вычитание или только умножение и деление, то они выполняются по порядку слева направо.

I – в Решает №2

40 – 5 · 3 =                     30 : 6 + 3 · 9 = 

45 : 5 + 17 =                   5 · 4 – 32 : 8 = 

II – в решает №4

16 – 3 · 3 + 5 · 5 =           6 · 3 : 2 + 5 · 8 · 0 = 

7 · 2 + 10 : 5 – 4 · 4 =      3 · 8 + 35 : 5 + 0 : 239 = 

Проверка: обмениваются тетрадями и проверяют друг у друга.

Проводит ребенок.

 

Задачи №7

а) жужжащее чтение условия.

Что известно? (что на 1 свитер -  5 мотков, на 1 жакет – 6 мотков  )

Что не известно? (сколько мотков пойдет на 6 свитеров и 2 жакета)

Что сначала узнаем? (сколько мотков пойдет на 6 свитеров)

Как узнаем? (5 · 6)

Что за тем узнаем? (сколько мотков пойдет на 2 жакета)

Как узнаем? (6 · 2)

I – в решает по действиям

II – в решает выражением

5 · 6 + 6 · 2 = 42 ( м.)

Если решаем выражением, сколько действий сделали? (3) А по действиям? (3)

б) Жужжащее чтение условия.

Что известно? (на одно платье - 3  м, а всего было 2 отрезка, в одном из которых 18 м, а  в другом  6 м.)

Что не известно? (сколько платьев можно сшить из двух отрезков)

Изобразите на чертеже

                             ?

 

 

                 18 м                 6 м

1 сп. 18 : 3 + 6 : 3 = 8 (пл.)

2 сп ( 18 + 6) : 3 = 8 (пл.)

Смотрят №10.

Что такое периметр? (сумма длин сторон) Значит, что нужно найти сначала? (длины сторон) Это задание выполните дома.

Так как же выполнять действия в выражении без скобок?

   

 

 

Решает самостоятельно на доске.

 

 

 

Решает на карточке

 

Записать на таблице

 

 

Выполняют остальные дети

 

Запись на доске

 

 

Записывают одни выражения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Один человек у доски

 

 

 

Информация о работе Математические слова и предложения. Развитие логического мышления при изучение элементов алгебры и математической логики