Автор работы: Пользователь скрыл имя, 03 Апреля 2012 в 06:50, дипломная работа
Целью исследования является разработка методики формирования умений по теме «Алгебраический материал».
Введение.
Глава I. Исторические и психолого-педагогические основы темы «Математические слова и предложения. Развитие логического мышления при изучение элементов алгебры и математической логики.»
§ 1. История возникновения математической логики и алгебры.
§ 2. Математический язык. Понятие о математических словах и предложениях.
§ 3. Анализ заданий школьного учебника второго класса. Система дополнительных упражнений на развитие логического мышления учащихся.
Глава II. Методика изучения элементов алгебры и математической логики.
§ 1. Методика изучения числовых выражений, выражений с переменными, числовых равенств и неравенств, уравнений.
§ 2. Различные трактовки введения понятий алгебры и математической логики.
§ 3. Разработка конспектов уроков по теме.
§ 4. Материал для внеклассной работы.
§ 5. Эксперимент.
Заключение.
Литература.
х = -
х =
Здесь два места, в которых х слева от знака равенства в одиночестве. Нижняя часть явно показывает, что корень моркови это и есть корень уравнения. Верхняя-
Подробно рассказывает, как мы действуем, чтобы найти корень, то есть решаем уравнение: показываем, как из целого (моркови) и известной части (хвостика) узнаем неизвестную часть ( корень). Ц – Ч изв.= Ч н
А теперь нарисуем ракету. У нее отпадает ступень с горючим и остается ракетоноситель.
Показывают как от ракеты отпадает ступень с горючим. Рисуют отпавшую часть – корень уравнения.
Затем дети сочиняют свои уравнения по схемам. Например: Ц - х = Ч изв. х = Ц – Ч изв.
Х = Ч (та, которая спряталась в первой строчке.)
Теперь решим уравнение, где х перебрался на другое место.
+ х =
Ч изв. + х = Ц
Х = Ц - Ч изв.
Х = Ч1
Теперь решим уравнение, в котором за х спряталось целое. Пока мы все разбирали, а теперь будем собирать целое из частей.
Х – Ч 1 = Ч 2
Х = Ч 1 + Ч 2
Чтобы сложить целое нужно сложить его части. А вот еще одно уравнение:
Х = +
Х =
Получился воздушный шар. А теперь дети сами сочиняют и решают уравнения. Зная целое и части, можно легко действовать с числами.
Х - 2 = 7 5 – х = 3
Начинают с того, что определяют, где целое, и подчеркивают его. Ведь отнимать можно только от целого.
Х - 2 = 7 5 – х = 3
Из этих уравнений только в первом мы ищем целое. В двух других – части.
Х = 7 + 2 х = 5 –3 х = 9 - 6
Х = 9 х =2 х = 3
Уравнение помогает узнать, верно ли произведены вычисления, если вместо х подставить свою находку – число.
Х - 2 = 7 5 – х = 3
9 – 2 = 7 5 – 2 = 3 6 + 3 = 9
Таким образом, для того что бы решить уравнение нужно:
а) Отметить целое;
б) Найти решение;
в) Записать корень уравнения;
г) Сделать проверку – подставить найденное число в первую сторону и убедиться, что конечные числа совпадают.
Если что-то не так, то нужно проверить, где поторопился. Это тоже важное умение – найти у себя ошибку и исправить ее.
Затем дети знакомятся с правилами, которые называются болтушки – приговорки. То, что складывают, - слагаемые.
с1 + с2 = сумма
3 + 5 = 8
То, что сложили, и есть сумма. Подбирают слагаемые и сумму: 6 + 4 = 10
* * =
Когда число уменьшают, его называют уменьшаемое. От него можно что-то отнять. Число, которое вычитают, называют вычитаемое. Ищем их разницу, или разность. Подбирают числа: 7 – 6 = 1
* * =
Х = р + в
Х = у
Решаем уравнения:
у в р у в р
Х – 5 = 4 х – 7 = 2
Болтушка №2. Что бы найти вычитаемое, на разность уменьшаем уменьшаемое.
Х = у - р
Х = в
Решают уравнения:
у в р у в р
8 – х = 3 7 – х = 4
Болтушка №3. Чтобы найти любое слагаемое, от суммы отнимаем все остальные. Х + с2 = сумма
Х = сумма - с2
Х = с1
Решают уравнения:
с1 с2 сум. с1 с2 сум.
3 + х = 9 х + 4 = 8
После этого решаются уравнения, основанные на знании состава чисел.
Записывают состав чисел без повторов, так как при перемене мест слагаемых сумма не меняется.
Поиграем в занимательные игры «Клоуны» и «Вертушки», где вместо х нужно вписать свое число.
«Клоуны» «Вертушки»
А теперь вставляют х в состав числа и узнают его. 6 х 4 3 7 6 х 4
0 1 2 3 0 1 2 3
И решают уравнения: 6 – х = 1; 2 + х = 7.
Запиши состав чисел 8 и 9.
* * * * * * * * * *
Найди х, в квадрате напиши отгадку.
8 7 х 5 4 8 7 6 5 4 8 7 6 5 9 8 7 6 5
0 1 2 3 4 х 1 2 3 4 1 2 3 4 0 1 2 х 4
Реши уравнения: 8 – х = 2; 8 + х = 8; х – 7 = 2; 9 – х = 6.
Далее переходят к решению задач при помощи уравнений. Задачи в схемах.
Схема №1.
I – в
II -
Задача: Десять селедок разложили на две тарелки с учетом схемы.
I – х 10с. I – 7c. 10с.
II – 3с.
Составляют и решают уравнения по схемам: 7 + х = 10; х + 3 = 10.
Схема № 2.
Было – 10 птиц.
Исчезли – 5 птиц
Осталось – х птиц
Задача: сидели на дереве 10 птиц, пять птиц улетели. Сколько птиц осталось?
Решение: 10 – х = 5.
Схема №3.
Было – х
Добавили – 5 ягод
Стало – 10 ягод
Дети самостоятельно придумывают условие задачи и решают ее: х + 5 = 10.
Так же детей знакомят с самым легким способом решения уравнений – аналогия.
Надо решить уравнение, а ребенок забыл как. Что же делать? Давайте рассмотрим уравнения. И ребенок всегда будет помнить, как они решаются.
2 + 3 = 5 5 –3 = 2 5 – 3 = 2
х + 3 = 5 х – 3 = 2 5 – х = 2
х = 5 – 3 х = 2 + 3 х = 5 - 2
Это синее это зеленое это красное
Решим уравнение: х + 5 = 11. Какое оно? Синее. Значит, оно решается так: х = 11 – 5.
Затем изучение уравнений продолжается во втором классе, после того, как дети ознакомились с такими действиями как умножение и деление. Начнем с болтушек.
Множитель 1 множитель 2 = произведение
М1 М2 = П
Х М2 = П М1 х = П
Х = П : М2 х = П : М1
Что бы узнать неизвестный множитель, произведение разделим на другой известный множитель.
Мизв. х = П х · 4 = 8
Х = П : Мизв. Х = 8 : 4
Если мы что-то разделим, то получим часть этого, поэтому результат деления назовем частным. То, что делят, - делимое. То, на что делят, - делитель. Д : д = Ч
Х : д = Ч х : 4 = 3 Д : х = Ч 15 : х =3
Х = д Ч х = 4 · 3 х = Д :Ч х = 15 : 3
Х = Д х =12 х = д х =5
Затем изучаются уравнения в задачах на умножение и деление.
Схема №1.
Всего – 20 яблок
В одном пакете – 5 яблок
Пакетов – х
Задача: В каждом пакете по пять яблок. Какое количество пакетов понадобится для 20 яблок?
В = О К, где В – всего яблок, О – количество яблок в одном пакете, К – количество пакетов: 20 = 5 · х.
Схема №2.
Стоимость – 30 тыс. $
Цена – х
Количество – 3
Задача: сколько стоит одна машина, если за три таких машины заплатили 30 тыс. $?
Ст. = Ц К, где Ст. – общая стоимость, Ц – цена одной машины, К – количество машин: 30 = х · 3.
Схема №3.
S – путь – 15 км
t – время – х
υ – скорость – 5 км/ч
Задача: Велосипедист проехал 15 км со скоростью 5 км/ч. Сколько времени он катался?
S = υ t; 15 = 5 · х.
И только после этого решаются уравнения на все четыре действия. Для решения таких уравнений вводится такая занимательность как машинка уравнений, но для этого нужно знать обратимость действий:
+ ←―――――――→ -
оборачивается в
:←―――――――→ ·
Загадываем число, вводим в машинку, умножим на два и складываем с числом 4.
↓ ↑
↓ ↑