Развитие наглядно-действенного и наглядно-образного мышления младших школьников

Автор работы: Пользователь скрыл имя, 21 Марта 2012 в 09:50, курсовая работа

Краткое описание

Создание новой системы начального обучения вытекает не только из новых общественно-экономических условий жизни нашего общества, но и определяются большими противоречиями в системе народного образования, которые сложились и ярко проявились в последние годы. вот некоторые из них:

Содержание работы

Введение
Глава I. Развитие наглядно-действенного и наглядно-образного мышления на интегрированных уроках математики и трудового обучения.
П. 1.1. Характеристика мышления как психического процесса.
П. 1.2. Особенности развития наглядно-действенного и наглядно-образного мышления детей младшего школьного возраста.
П. 1.3. Изучение опыта учителей и методов работы по развитию наглядно-действенного и наглядно-образного мышления младших школьников.
Глава II. Методико-математические основы формирования наглядно-действенного и наглядно-образного мышления младших школьников.
П. 2.1. Геометрические фигуры на плоскости.
П. 2.2. Развитие наглядно-действенного и наглядно-образного мышления при изучении геометрического материала.
Глава III. Опытно-экспериментальная работа по развитию наглядно-действенного и наглядно-образного мышления младших школьников на интегрированных уроках математики и трудового обучения.
П. 3.1. Диагностика уровня развития наглядно-действенного и наглядно-образного мышления младших школьников в процессе проведения интегрированных уроков математики и трудового обучения во 2 классе (1-4)
П. 3.2. Особенности использования интегрированных уроков по математике и трудовому обучению при развитии наглядно-действенного и наглядно-образного мышления младших школьников.
П. 3.3. Обработка и анализ материалов эксперимента.
Заключение
Список использованной литературы

Содержимое работы - 1 файл

Развитие наглядно-действенного и наглядно-образного мышления младших школьников.docx

— 70.19 Кб (Скачать файл)

 

 

 

Программа по математике в  начальных классах является органической частью курса математики в средней  школе. В настоящее время существует несколько программ обучения математике в начальных классах. самой распространенной является программа по математике для  трехлетней начальной школы. Эта  программа предполагает, что изучение соответствующих вопросов будет  проводиться  в течение 3-х лет  начального обучения, в связи с  введением новых единиц измерения  и изучением нумерации. В третьем  классе подводится итог этой работы.

 

В программе заложена возможность  реализации межпредметных связей между  математикой, трудовой деятельностью, развитием речи, ИЗО. Программа предусматривает  расширение математических понятий  на конкретном, жизненном материале, что дает возможность показать детям, что все те понятия и правила, с которыми они знакомятся на уроках, служат практике, родились из ее потребностей. Это кладет начало формированию правильного  понимания связи между наукой и практикой. Программа по математике позволит вооружить детей умением  и навыками, необходимыми для самостоятельного решения новых учебных и практических задач, воспитания у них самостоятельности  и инициативы, привычки и любви  к труду, искусству, чувству отзывчивости, настойчивости в преодолении  трудностей.

 

Математика способствует развитию у детей мышления, памяти, внимания, творческого воображения, наблюдательности, строгой последовательности, рассуждения и его доказательности; дает реальные предпосылки для дальнейшего  развития наглядно-действенного и наглядно-образного  мышления учеников.

 

Такому развитию способствует изучение геометрического материала, связанного с алгебраическим и арифметическим материалом. Изучение геометрического  материала способствует развитию познавательных способностей младших школьников.

 

По традиционной системе (1-3) изучается следующий геометрический материал:

 

¨       В первом классе геометрический материал не изучается, но геометрические фигуры используются как дидактический материал.

 

¨       Во втором классе изучаются: отрезок, прямые и  непрямые углы, прямоугольник, квадрат, сумма длин сторон прямоугольника.

 

¨       В третьем  классе: понятие многоугольника и  обозначение точек, отрезков, многогранников буквами, площадь квадрата и прямоугольника.

 

Параллельно традиционной программе  существует и интегрированный курс "Математика и конструирование", авторами которых являются С. И. Волкова  и О. Л. Пчелкина. Интегрированный  курс "Математика и конструирование" представляет собой объединение  в одном предмете двух разноплановых  по способу овладения ими предметов: математики, изучение которой носит  теоретический характер и не всегда одинаково полно в процессе изучения удается реализовать ее прикладной и практический аспект, и трудовое обучение, формирование умений и навыков, которое носит практический характер, не всегда одинаково глубоко подкрепленный  теоретическим осмыслением.

 

Основными положениями этого  курса являются:

 

-     существенное  усиление геометрической линии  начального курса математики, обеспечивающее  развитие пространственных представлений  и воображений, включающих в  себя линейные, плоскостные и  пространственные фигуры;

 

-     интенсификация  развития детей;

 

Основная цель курса "Математика и конструирование" состоит  в  том, чтобы обеспечить числовую грамотность  учащихся, дать им начальные геометрические представления, развивать наглядно-действенное  и наглядно-образное мышление и пространственное воображение детей. Сформировать у  них элементы конструкторского мышления и конструктивных  умений. Данный курс представляет возможность дополнить  учебный предмет "Математика" конструкторско-практической деятельностью  учащихся, в которой находит подкрепление и развитие мыслительная деятельность детей.

 

Курс  "Математика и  конструирование" с одной стороны  способствует актуализации и закреплению  математических знаний и умений через  целенаправленный материал логического  мышления и зрительного восприятия учащихся, а с другой стороны, создает  условия для формирования элементов  конструкторского мышления и конструкторских  умений. В предлагаемом курсе кроме  традиционных сведений даются сведения о линиях: кривой, ломаной, замкнутой, о круге и окружности, центре и  радиусе окружности. Расширяется  представление об углах, знакомятся с объемными геометрическими  фигурами: параллелепипедом, цилиндром, кубом, конусом, пирамидой и их моделированием. Предусмотрены различные виды конструктивной деятельности детей: конструирование  из палочек равной и неравной длин. Плоскостное конструирование из  вырезанных готовых фигур: треугольника, квадрата, круга, плоскости, прямоугольника. Объемное конструирование с помощью  технических рисунков, эскизов и  чертежей, конструирование по образу, по представлению, по описанию и др.

 

К программе прилагается  альбом с печатной основой, в которой  приводятся задания на развитие наглядно-действенного и наглядно-образного мышления.

 

Наряду с курсом "Математика и конструирование" существует курс "Математика с усилением линии  на развитие познавательных способностей учащихся", авторы С. И. Волкова и  Н. Н. Столярова.

 

Предлагаемый курс математики характеризуется теми же базисными  понятиями и их последовательностью, что и действующий в настоящее  время курс математики в начальной  школе. Одной из основных целей разработки нового курса стало создание действенных  условий для развития познавательных способностей и деятельности детей, их интеллекта и творческого начала, расширение их математического кругозора.

 

Содержание представляемого  курса состоит из пяти различных  блоков: арифметического, алгебраического, геометрического, блока содержательно-логических задач и блок, который можно  условно назвать компьютерным. Первые три блока являются основными  носителями содержания математического  курса.

 

Основным из компонентов  программы является целенаправленное развитие познавательных процессов  младших школьников и базирующееся на нем математическое развитие, включающее в себя умение наблюдать и сравнивать, замечать общее в различном, находить закономерности и делать вывод, строить  простейшие гипотезы, проверять их, иллюстрировать примерами, проводить  классификацию объектов, понятий  по заданному основанию, развивать  способность к простейшим обобщениям, умения использовать математические знания в практических работах.

 

Четвертый блок программы  по математике содержит в себе задачи и задания на:

 

-     развитие познавательных  процессов учащихся: внимания, воображения,  восприятия, наблюдения, памяти, мышления;

 

-     формирование  специфических математических способов  действий: обобщения, классификации,  простейшего моделирования;

 

-     формирование  умений практически применять  полученные математические знания.

 

Систематическое выполнение целенаправленно подобранных содержательно-логических заданий, решение нестандартных  заданий будет развивать и  совершенствовать познавательную деятельность детей.

 

Среди программ, рассмотренных  выше, существуют программы развивающего обучения. Программа развивающего обучения Л. В. Занюкова разработана для трехлетней начальной школы и является альтернативной системе обучения, которая действовала  и действует сейчас в практике. Геометрический материал пронизывает  все три курса начальной школы, т. е. он изучается во всех трех классах  по сравнению с традиционной системой.

 

В первом классе особое место  уделяется знакомству с геометрическими  фигурами, их сравнению, классификации, выявлению свойств, присущих той  или иной фигуре.

 

"Именно такой подход  к изучению геометрического материала  делает его эффективным для  развития детей", - считает Л.  В. Занюков. Его программа направлена  на развитие познавательных способностей  детей, поэтому в учебнике по  математике содержится много  заданий на развитие памяти, внимания, восприятия, развития, мышления.

 

Развивающее обучение по системе  Д. Б. Эльконина – В. В. Давыдова предусматривает  в развитии ребенка познавательных функций (мышления, восприятия памяти и т. д.) Программа ставит своей  целью формирования у младших  школьников математических понятий  на основе содержательного обобщения, которое означает, что ребенок  движется в учебном материале  от общего к частному, от абстрактного к конкретному. Основным содержанием  представленной программы обучения является понятие рационального  числа, начинающегося с анализа  генетически исходного для всех видов чисел отношений. Таким  отношением, порождающим рациональное число, является отношение величин. С изучением величин и свойств  их отношений и начинается курс математики в первом классе.

 

Геометрический материал связывается с изучением величин  и действий с ними. Вычеркивая, вырезая, моделируя, дети знакомятся с геометрическими  фигурами и их свойствами. В третьем  классе специально рассматриваются  способы непосредственного измерения  площади фигур и вычисления площади  прямоугольника по заданным сторонам. Среди имеющихся программ существует программа развивающего обучения Н. Б. Истоминой. При создании своей  системы автор постаралась осуществить  всесторонний учет тех условий, которые  влияют на развитие детей, Истомина подчеркивает, что развитие может осуществляться в деятельности. Первой идеей программы  Истоминой является идея деятельного  подхода к обучению максимальная активность самого ученика. И репродуктивная и продуктивная деятельность влияет на развитие памяти, внимания, восприятия, но мыслительные процессы успешнее развиваются  при продуктивной, творческой деятельности. "Развитие будет идти, если деятельность будет систематичной",- считает  Истомина.

 

В учебниках первого –  третьего классов содержится много  заданий геометрического содержания для развития позитивных способностей.

 

1.2.     Особенности  развития  наглядно-действенного  и наглядно-образного мышления  детей младшего  школьного возраста.

 

Интенсивное  развитие интеллекта происходит в младшем школьном возрасте.

 

Ребенок, особенно 7-8 летнего  возраста, обычно мыслит конкретными  категориями, опираясь при этом на наглядные  свойства и качества конкретных предметов  и явлений, поэтому в младшем  школьном возрасте продолжает развиваться  наглядно-действенное и наглядно-образное  мышление, что предполагает активное включение в обучение моделей  разного типа (предметные модели, схемы, таблицы, графики и т.п.)

 

"Книжка с картинками, наглядное пособие, шутка учителя  – все вызывает у них немедленную  реакцию. Младшие школьники находятся  во власти яркого факта, образы, возникающие на основе описания  во время рассказа учителя  или  чтения книжки, очень ярки". (Блонский П.П.: 1997, с. 34).

 

Младшие школьники склонны  понимать буквально переносное значение слов, наполняя их конкретными образами. Ту или иную мыслительную задачу учащиеся решают легче, если опираются на конкретные предметы, представления или  действия. Учитывая образность мышления, учитель  принимает большое количество наглядных  пособий, раскрывает содержание абстрактных  понятий и переносное значение слов на ряде конкретных  примеров. И запоминают младшие школьники  первоначально  не то, что является наиболее существенным с точки зрения учебных задач, а то, что  произвело на них  наибольшее впечатление: то, что интересно, эмоционально окрашено,  неожиданно и ново.

 

Наглядно-образное мышление очень ярко проявляется  при понимании, например, сложных картин, ситуаций. Для понимания таких сложных  ситуаций требуется сложная ориентировочная  деятельность. Понять сложную картину  – это значит понять  ее внутренний смысл. Понимание смысла  требует  сложной аналитико-синтетической  работы, выделения деталей сопоставления  их друг с другом. В наглядно-образном мышлении участвует и речь, которая  помогает назвать признак, сопоставить  признаки. Только на основе развития наглядно-действенного и наглядно-образного мышления начинает формироваться в этом возрасте  формально-логическое мышление.

 

Мышление детей этого  возраста значительно отличается  от мышления дошкольников: так если для мышления дошкольника характерно такое качество, как непроизвольность, малая  управляемость и в постановке мыслительной задачи, и в ее решении, они чаще и легче задумываются и над тем, что  им  интересней, что их увлекает, то младшие школьники  в результате, обучения в школе, когда  необходимо  регулярно выполнять  задания в обязательном порядке, научиться управлять своим мышлением.

 

Во многом формированию такому произвольному, управляемому мышлению способствует указание учителя на уроке, побуждающие детей к размышлению.

 

Учителя знают, что мышление у детей одного и того же возраста достаточно разное. Одни дети легче  решают задачи  практического характера,  когда требуется использовать приемы наглядно-действенного мышления , например задачи, связанные с конструированием и изготовлением изделий на уроках труда. Другим легче  даются задания, связанные с необходимостью воображать и  представлять  какие-либо события  или какие-нибудь состояния предметов  или явлений. Например, при  написании  изложений, подготовке рассказа по картинке и т.п. Третья часть детей легче  рассуждает, строит условные суждения и умозаключения, что позволяет  им более успешно, чем остальным  детям, решать математические задачи, выводить общие правила и использовать их в конкретных случаях.

 

Встречаются такие дети, которым  трудно и  мыслить практически  и оперировать образами, и рассуждать, и такие, которым все это делать легко (Теплов Б.М.: 1961, с. 80).

 

Наличие такого разнообразия  в развитии разных видов мышления у разных детей в значительной мере затрудняет и осложняет работу учителя. Поэтому ему целесообразно  более отчетливо представлять  основные уровни развития видов мышления у младших школьников.

 

О наличии того или иного  вида мышления у ребенка можно  судить по тому, как он решает соответствующие  данному виду мышления  задачи. Так, если при решении легких задач  – на практическое преобразование предметов, или на  оперирование их  образами, или на  рассуждение  – ребенок  плохо  разбирается  в их условии, путается  и теряется  при поиске их решения,  то в этом случае считается, что у него первый уровень развития в соответствующем  виде мышления (Зак А.З.: 1984, с. 42).

Информация о работе Развитие наглядно-действенного и наглядно-образного мышления младших школьников