Автор работы: Пользователь скрыл имя, 24 Мая 2012 в 20:00, курсовая работа
С давних времен транспорт являлся двигателем прогресса. Человек использовал любые подручные средства для перевозки людей и грузов. С изобретением колеса, а несколько позже и различных типов двигателей человек стал соответственно развивать и средства передвижения: повозки, кареты, пароходы, паровозы, самолеты и т. д.
ВВЕДЕНИЕ………………………………………………………………………4
1. СИСТЕМЫ СЕРВИСА И ИХ ХАРАКТЕРИСТИКИ………………….....6
1.1. Классификация систем сервиса…………………………………………….6
1.2. Общая характеристика состава систем сервиса различных типов……..130
1.3. Состав систем жизнеобеспечения и безопасности транспортных средств………………………………………………………………………………11
1.3.1. Системы пожаротушения………………………………………..........11
1.3.2. Системы бытового водоснабжения…………………………………..15
1.3.3. Сточные системы……………………………………………………...15
1.3.4. Системы микроклимата……………………………………………….15
1.4. Системы оказания услуг в сфере заказов на перевозки пассажиров и грузов…………………………………………………………………………………17
1.5. Системы обслуживания транспортных средств………………………....18
1.6. Показатели эффективности систем сервиса………………………….....19
1.7. Производственные системы сервиса……………………………………..21
1.7.1. Назначение и состав производственных систем сервиса……………21
1.7.2. Показатели функционирования производственных систем сервиса…………………………………………………………………………………….23
2. НАДЕЖНОСТЬ ФУНКЦИОНИРОВАНИЯ СИСТЕМ СЕРВИСА.....24
2.1. Основные понятия надежности…………………………………………..24
2.2. Состояния объекта и события, характеризующие надежность…………25
2.2.1. Состояния объекта……………………………………………………...25
2.2.2. События, характеризующие надежность……………………………...28
2.3. Характеристики эксплуатации объектов, оцениваемых надежностью...30
2.4. Показатели надежности систем сервиса…………………………………32
2.4.1. Показатели безотказности…………………………………………….32
2.4.2. Показатели долговечности……………………………………………37
2.4.3. Показатели ремонтопригодности…………………………………….38
2.4.4. Показатели сохраняемости………………………………………… 39
2.4.5. Комплексные показатели надежности……………………………….40
2.5. Факторы, влияющие на надежность систем……………………………..42
2.5.1.Субъективные факторы………………………………………………..42
2.5.2. Объективные факторы………………………………………………...43
2.6. Методы, используемые для определения показателей надежности…..48
2.7. Расчет показателей безотказности систем сервиса… ………………..51
2.8. Расчет показателей ремонтопригодности систем сервиса……………..54
2.9. Влияние безотказности и ремонтопригодности систем сервиса на
продолжительность обслуживания систем…………………………… 55
2.10. Основы расчета показателей долговечности систем сервиса…..…...57
2.10.1. Основные расчетные соотношения……………..………………...57
2.10.2. Расчет показателей долговечности систем сервиса……..……….59
ЛИТЕРАТУРА…………………………………………………………………...62
Kог = KгожP(tр),
где Kгож – коэффициент готовности объекта в режиме ожидания;
Kгож = Tож / (Tож + Tв);
Tож – среднее время между отказами в режиме ожидания;
P(tр) – вероятность безотказной работы объекта в течение заданного времени tр (в рабочем режиме).
Коэффициент планируемого применения – доля периода эксплуатации, в течение которой объект не должен находиться на плановом техническом обслуживании и ремонте:
Чем безотказнее объект, чем выше его приспособленность к техническому обслуживанию и ремонту и чем совершеннее система технического обслуживания и ремонта, тем выше .
Здесь: tэ – продолжительность эксплуатации объекта;
– суммарные продолжительности планируемых технических обслуживаний и ремонтов объекта.
Коэффициент сохраняемости эффективности – отношение значения показателя эффективности за определенную продолжительность эксплуатации к номинальному значению этого показателя, вычисленному при условии, что отказы объекта в течение того же периода эксплуатации не возникают:
где – показатель эффективности объекта, эксплуатируемого в период времени t;
– то
же, но при условии, что отказы за время
t отсутствуют.
2.5. Факторы, влияющие
на надежность
систем
Для оценки надежности с помощью рассмотренных показателей необходимо учитывать факторы, влияющие на надежность. Эти факторы разбивают на две группы: субъективные и объективные.
Субъективные факторы определяются деятельностью обслуживающего персонала. К субъективным факторам относятся: квалификация обслуживающего персонала; соблюдение правил эксплуатации; уровень организации технического обслуживания.
Квалификация определяется уровнем подготовленности персонала, знанием назначения и устройства оборудования, условий и правил эксплуатации, умением поддерживать его в работоспособном состоянии, предупреждать появление некоторых отказов и устранять причины возникших отказов. Хорошо подготовленный персонал может обеспечить эксплуатацию, например, транспортных средств с меньшими затратами сил и средств.
Соблюдение правил эксплуатации способствует содержанию транспортных средств в работоспособном состоянии. Эти правила предусматривают такие действия персонала, которые лучше обеспечивают эксплуатацию данного транспортного средства.
Уровень организации технического обслуживания характеризуется рядом мероприятий (профилактика, снабжение запасными частями и т.п.), направленных на обеспечение эксплуатации с высокими значениями коэффициента готовности. Невыполненная вовремя смазка может привести к отказу узла, а отсутствие в ЗИПе необходимого элемента не позволит быстро восстановить оборудование.
Объективные факторы определяются временем и условиями эксплуатации и включают: время эксплуатации; климатические факторы; механические факторы; биологические факторы; режимы работы.
Время эксплуатации является одним из основных факторов, который необходимо учитывать на всех этапах эксплуатации. В начальный период эксплуатации выполняются технологические и конструктивные недостатки, что приводит к возрастанию интенсивности отказов в этот период. Длительность этого интервала для различного оборудования может колебаться от нескольких десятков до сотен часов наработки. Для уменьшения этого интервала оборудование подвергается предварительной тренировке (прогону) в течение определенного времени с тем, чтобы до установки на транспортное средство оно выработало время приработки и ненадежные узлы были бы своевременно заменены.
После достаточно длительной эксплуатации (несколько тысяч часов работы) на состоянии оборудования начинает сказываться износ (старение), причиной которого являются физико-химические процессы, происходящие в элементах оборудования в течение всего времени эксплуатации. Оборудование начинает чаще отказывать:
а) у переменных резисторов, щеток электрических машин старение (износ) заключается в изменении сопротивления проводящего слоя и его стирании, монтажные провода приходят в негодность из-за высыхания и растрескивания изоляции;
б) механические и электромеханические элементы и узлы больше подвержены износу, чем старению (редукторы, реле, сельсины, подшипники ).
Скорость
износа и старения определяется режимами
и интенсивностью воздействия других
факторов. С целью замедления процесса
старения широко применяют герметизацию
элементов или целых узлов. Износ
механических элементов замедляется
своевременным проведением
Климатические факторы включают: температуру окружающей среды; влажность и атмосферные осадки; атмосферное давление; солнечную радиацию.
Транспортные средства эксплуатируются при различных температурных условиях. Сезонные и суточные колебания температуры для различных районов приведены в табл. 2.2.
Зона |
Сезонные
колебания |
Суточные
колебания |
Экваториальная
(тропики)
Умеренная Арктическая |
+10…+50
-20…+40 -50…+35 |
40
25 20 |
Температурное влияние тем больше, чем больше скорость и частота изменения температуры. В наихудших в этом смысле условиях находится оборудование, расположенное вне помещений. При низких температурах пластмассы теряют прочность, резиновые изделия становятся хрупкими и растрескиваются, металлы делаются ломкими, нарушается регулировка зазоров и т.п. Повышенная температура способствует ускорению распада органических изоляционных материалов, перегреву и выходу из строя транзисторов.
Влажность является одним из наиболее сильно воздействующих на транспортные средства факторов. Влияние влажности сказывается на ускоренном разрушении лакокрасочных защитных покрытий, нарушении герметизации и заливок, нарушении электрической прочности радиоэлементов, окислении контактов.
Атмосферные осадки способствуют возрастанию влажности со всеми вытекающими последствиями. На оборудование, расположенное на судах, сильное влияние оказывают брызги и пыль морской воды.
Атмосферное давление оказывает воздействие на оборудование непосредственным и косвенным путем.
Изменение давления в зависимости от высоты полета имеет характер, приведенный в табл. 2.3.
С изменением давления изменяются значения допустимых пробивных напряжений, искажается форма сигналов. Косвенное влияние проявляется через ухудшение с понижением давления отвода тепла от элементов, что может привести к их перегреву. В связи с этим необходимо в процессе эксплуатации следить за состоянием систем охлаждения.
Высота, км | Давление, мм рт.ст. |
0,1 | 700 |
1,0 | 670 |
3,0 | 520 |
5,0 | 405 |
30,0 | 8,5 |
Солнечная радиация приводит к тепловому воздействию ультрафиолетовых лучей. Тепловое излучение ухудшает условия охлаждения аппаратуры и способствует ее местному или общему перегреву. Воздействие ультрафиолетовых лучей приводит к активации процессов старения. Все это ведет к быстрому изменению параметров элементов (узлов), что влечет за собой появление отказов.
Механические факторы вызываются ударами и вибрациями в процессе эксплуатации. Удары и вибрации могут привести к нарушению целостности паек, контактов, разрушению электронных ламп, крепежных деталей. Характеристики по вибрациям и перегрузкам различных видов транспорта приведены в табл.2.4.
Практика
показывает, что наиболее опасными являются
вибрации с частотами 15 – 150 Гц и 175 – 500
Гц. Первому диапазону частот соответствует
возникновение резонансных явлений в
конструкциях аппаратуры, второму – резонансные
явления в электронных лампах, приводящие
к разрушению спаек из металла и стекла.
Эти обстоятельства вызывают необходимость
постоянно следить за средствами амортизации
и креплением аппаратуры на транспортном
средстве.
Вид транспорта | Вибрации, Гц | Перегрузки, g | Значения частот, соответствующие максимуму перегрузок, Гц |
Морской | 0….30 | 1 | 10…30 |
Железнодорожный | 1,5…400 | 2 | 2…8, 30…400 |
Авиационный | 0…300 | 20 | |
Автомобильный | 0…200 | 4…5 | 150…300 |
Биологические факторы воздействуют на аппаратуру посредством живых организмов: грибковых образований (плесени), насекомых, грызунов и т.п.
Грибковые образования возникают во влажной атмосфере на деталях из органических материалов и питаются продуктами их разложения. Для исключения их возникновения необходимо регулярно выполнять осмотры, постоянно поддерживать условия эксплуатации, установленные эксплуатационной документацией.
Режимы
работы оказывают существенное влияние
на надежность элементов, узлов и всего
оборудования в целом. Уменьшение нагрузок
способствует увеличению надежности.
Режим работы оценивается через коэффициент
нагрузки
где Нр – рабочая нагрузка; Но – номинальная нагрузка.
Естественно, что работа элементов при предельно допустимых нагрузках сокращает их срок службы и не гарантирует надежной работы. Коэффициент нагрузки для электротехнических средств обычно составляет 0,4 – 0,6, а для особо важной аппаратуры берется равным 0,1.
Характерное распределение отказов по объективным причинам показано в табл.2.5.
Таблица 2.5
Внешние факторы | Процент отказов |
Удары и вибрации | 28,7 |
Низкая температура | 24,1 |
Высокая температура | 23,1 |
Влажность | 13,9 |
Высота | 4,2 |
Ускорение | 3,2 |
Соленые брызги | 1,9 |
Прочие | 0,9 |
Всего | 100 |