Комплексные числа и их применение

Автор работы: Пользователь скрыл имя, 07 Февраля 2011 в 21:08, реферат

Краткое описание

Целью работы является знакомство с теоретическим материалом по теме «Комплексные числа» и применение теорем на практике.

Задачи данного исследования:

Ознакомится с историей возникновения и развития комплексных чисел
Дать понятие комплексного числа и рассмотреть свойства комплексных чисел
Изучить действия с комплексными числами
Проанализировать изученный материал
Решить задачи на применение комплексных переменных
Сделать выводы о проделанной работе

Содержание работы

Введение 3
1 История возникновения комплексных чисел 5
1.1 Развитие понятия о числе 5
1.2 На пути к комплексным числам 6
1.3 Утверждение комплексных чисел в математике 7
2 Комплексные числа и их свойства 10
2.1 Понятие комплексного числа 10
2.2 Геометрическая интерпретация комплексного числа 11
2.3 Модуль комплексного числа 12
2.4 Тригонометрическая форма комплексного числа 13
3 Действия с комплексными числами 15
3.1 Сложение и умножение комплексных чисел 15
3.2 Геометрическое изображение суммы комплексных чисел 15
3.3 Вычитание и деление комплексных чисел 16
3.4 Геометрическое изображение разности комплексных чисел 17
3.5 Свойства модуля и аргумента комплексного числа 18
3.6 Возведение в степень и извлечение корня 20
4 Квадратное уравнение с комплексным переменным 22
Заключение 26
Список литературы 27

Содержимое работы - 1 файл

комплексные числа реферат.doc

— 1,015.50 Кб (Скачать файл)

МОУ ГИМНАЗИЯ № 86 
 
 
 
 
 
 
 
 
 
 

РЕФЕРАТ 
 

На тему: 
 

«КОМПЛЕКСНЫЕ  ЧИСЛА И ИХ ПРИМЕНЕНИЕ» 
 
 
 
 
 
 

              Выполнил  ученик:

              8Б  класса  Ширшов М.Ю.  

              Проверил  преподаватель:

              первой  квалификационной категории Кусова В.М. 
               
               
               
               
               
               
               
               
               
               

Нижний  Тагил, 2010 
Содержание
 

 

Введение

 

    Комплексные числа были введены в математику для того, чтобы сделать возможной операцию извлечения квадратного корня из любого действительного числа. Это, однако, не является достаточным основанием для того, чтобы вводить в математику новые числа. Оказалось, что если производить вычисления по обычным правилам над выражениями, в которых встречаются квадратный корень из отрицательного числа, то можно прийти к результату, уже не содержащему квадратный корень из отрицательного числа. В XVI в. Кардано нашел формулу для решения кубического уравнения. Оказалось, когда кубическое уравнение имеет три действительных корня, в формуле Кардано встречается квадратный корень из отрицательного числа. Поэтому квадратные корни из отрицательных чисел стали употреблять в математике и назвали их мнимыми числами – тем самым они  как бы приобрели право на нелегальное существование. Полные гражданские права мнимым числам дал Гаусс, который назвал их комплексными числами, дал геометрическую интерпретацию и доказал основную теорему алгебры, утверждающую, что каждый многочлен имеет хотя бы один действительный корень.

    Решение многих задач физики и техники  приводит к квадратным уравнениям с отрицательным  дискриминантом.  Эти  уравнения не имеют  решения в области действительных чисел. Но решение многих таких задач имеет вполне определенный физический смысл. Значение величин, получающихся в результате решения указанных уравнений, назвали комплексными числами. Комплексные числа широко использовал отец русской авиации Н. Е. Жуковский (1847 – 1921) при разработке теории крыла, автором которой он является. Комплексные числа и функции от комплексного переменного находят применение во многих вопросах науки и техники.

    Выбор темы исследовательского проекта “комплексные числа и их применение”  представляется актуальным, так как в школьном курсе они не изучаются, хотя комплексные числа имеют широкое применение в других разделах математики.

    Объектом  изучения в данной работе является развитие комплексных чисел в разных разделах математики.

    Предметом изучения стали теоретические положения  о комплексных числах.

    Целью работы является знакомство с теоретическим  материалом по теме «Комплексные числа» и применение теорем на практике.

    Задачи  данного исследования:

    1. Ознакомится с историей возникновения и развития комплексных чисел
    2. Дать понятие комплексного числа и рассмотреть свойства комплексных чисел
    3. Изучить действия с комплексными числами
    4. Проанализировать изученный материал
    5. Решить задачи на применение комплексных переменных
    6. Сделать выводы о проделанной работе

 

1 История возникновения комплексных чисел

1.1 Развитие понятия о числе

 

    Древнегреческие математики считали “настоящими” только натуральные числа. Постепенно складывалось представление о бесконечности множества натуральных чисел.

    В III веке Архимед разработал систему обозначения вплоть до такого громадного как . Наряду с натуральными числами применяли дробные числа, составленные из целого числа долей единицы. В практических расчетах дроби применялись за две тысячи лет до н. э. в древнем Египте и древнем Вавилоне. Долгое время полагали, что результат измерения всегда выражается или в виде натурального числа, или в виде отношения таких чисел, то есть дроби. Древнегреческий философ и математик Пифагор учил, что “… элементы чисел являются элементами всех вещей, и весь мир в целом является гармонией и числом. Сильнейший удар по этому взгляду был нанесен открытием, сделанным одним из пифагорейцев. Он доказал, что диагональ квадрата несоизмерима со стороной. Отсюда следует, что натуральных чисел и дробей недостаточно, для того чтобы выразить длину диагонали квадрата со стороной 1. Есть основание утверждать, что именно с этого открытия начинается эра теоретической математики: открыть существование несоизмеримых величин с помощью опыта, не прибегая к абстрактному рассуждению, было невозможно.           

      Следующим важным этапом в  развитии понятия о числе было  введение отрицательных чисел - это было сделано китайскими математиками за два века до н. э. Отрицательные числа применяли в III веке древнегреческий математик Диофант, знавший уже правила действия над ними, а в VII веке эти числа уже подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменения величин. Уже в VIII веке было установлено, что квадратный корень из положительного числа имеет два значения - положительное и отрицательное, а из отрицательных чисел квадратный корень извлекать нельзя: нет такого числа , чтобы .

  1.2 На пути к комплексным числам

 

    В XVI веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений вида кубические и квадратные корни: .

      Эта формула безотказно действует  в случае, когда уравнение имеет  один действительный корень ( x=1), а если оно имеет три действительных корня ( x1=1 x2,3 = ), то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим корням ведет через невозможную операцию извлечения квадратного корня из отрицательного числа. Вслед за тем, как были решены уравнения 4-й степени, математики усиленно искали формулу для решения уравнения 5-й степени. Но Руффини (Италия) на рубеже XVIII и XIX веков доказал, что буквенное уравнение пятой степени нельзя решить алгебраически; точнее: нельзя выразить его корень через буквенные величины a, b, c, d, e с помощью шести алгебраических действий (сложение, вычитание, умножение, деление, возведение в степень,  извлечение корня).

      В 1830 году Галуа (Франция) доказал,  что никакое общее уравнение,  степень которого больше чем  4, нельзя решить алгебраически.   Тем не менее, всякое уравнение n-й степени имеет (если рассматривать и комплексные числа) n корней (среди которых могут быть и равные). В этом математики были убеждены еще в XVII веке (основываясь на разборе многочисленных частных случаев), но лишь на рубеже XVIII и XIX веков упомянутая теорема была доказана Гауссом.

    Итальянский алгебраист Дж. Кардано в 1545 г. предложил ввести числа новой природы. Он показал, что система уравнений , не имеющая решений во множестве действительных чисел, имеет решения вида , , нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать что .

1.3 Утверждение комплексных чисел в математике

 

    Кардано называл такие величины “чисто отрицательными” и даже “софистически отрицательными”, считал их бесполезными и старался их не употреблять. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение какой-нибудь величины. Но уже в 1572 году вышла книга итальянского алгебраиста Р. Бомбелли, в которой были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название “мнимые числа” ввел в 1637 году французский математик и философ Р. Декарт, а в 1777 году один из крупнейших математиков XVIII века - Л. Эйлер предложил использовать первую букву французского слова imaginaire (мнимый) для обозначения числа (мнимой единицы). Этот символ вошел во всеобщее употребление благодаря К. Гауссу .  Термин “комплексные числа”  так же был введен Гауссом в 1831 году. Слово комплекс (от латинского complexus) означает связь, сочетание, совокупность понятий, предметов, явлений и т. д. Образующих единое целое.

      В течение XVII века продолжалось обсуждение арифметической природы мнимых чисел, возможности дать им геометрическое обоснование. 

      Постепенно развивалась техника  операций над мнимыми числами.  На рубеже XVII и XVIII веков была построена общая теория корней n-ых степеней сначала из отрицательных, а за тем из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра (1707): . С помощью этой формулы можно было так же вывести формулы для косинусов и синусов кратных дуг. Л. Эйлер вывел в 1748 году замечательную формулу : ,  которая связывала воедино показательную функцию с тригонометрической. С помощью формулы Л. Эйлера можно было возводить число e в любую комплексную степень. Любопытно, например, что . Можно находить sin и cos от комплексных чисел, вычислять логарифмы таких чисел, то есть строить теорию функций комплексного переменного.

      В конце XVIII века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, например,  в теории колебаний материальной точки в сопротивляющейся среде. Еще раньше швейцарский математик Я. Бернулли применял комплексные числа для решения интегралов.

      Хотя в течение XVIII века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т. д., однако еще не было строго логического обоснования теории этих чисел. По этому французский ученый П. Лаплас считал, что результаты, полученные с помощью мнимых чисел, - только наведение, приобретающее характер настоящих истин лишь после подтверждения прямыми доказательствами.

      “Никто ведь не сомневается  в точности результатов, получаемых  при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы иероглифы нелепых количеств” Л. Карно.

      После создания теории комплексных  чисел возник вопрос о существовании “гиперкомплексных” чисел - чисел с несколькими “мнимыми” единицами. Такую систему вида , где , построил в 1843 году ирландский математик У. Гамильтон, который назвал их “кватернионами”. Правила действия над кватернионами напоминает правила обычной алгебры, однако их умножение не обладает свойством коммутативности (переместительности): например, , а . Гиперкомплексные числа не являются темой моего реферата, поэтому я лишь упоминаю об их существовании.

      Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые Н. И. Мусхелишвили занимался ее применениями к упругости, М. В. Келдыш и М. А. Лаврентьев - к аэро- и гидродинамике, Н. Н. Богомолов и В. С. Владимиров - к проблемам квантовой теории поля.

 

2 Комплексные числа и их свойства

2.1 Понятие комплексного числа

 

    Решение многих задач математики, физики  сводится  к  решению алгебраических уравнений. Поэтому исследование алгебраических уравнений является одним из важнейших вопросов в математике. Стремление сделать уравнения разрешимыми – одна из главных причин расширения понятия числа.

    Так для решимости уравнений вида   X²+A=B  положительных чисел недостаточно. Например, уравнение  X²+5=2  не имеет положительных корней. Поэтому приходится вводить отрицательные числа и нуль.

    На  множестве рациональных чисел разрешимы  алгебраические уравнения первой степени, т.е. уравнения вида  A·X+B=0 (A 0).  Однако алгебраические уравнения степени выше первой могут не иметь рациональных корней. Например, такими являются уравнения X2=2, X3=5. Необходимость решения таких уравнений явилось одной из причин введения иррациональных чисел. Рациональные и иррациональные числа образуют множество действительных чисел. 

    Однако  и действительных чисел недостаточно для того, чтобы решить любое алгебраическое уравнение. Например, квадратное уравнение с действительными коэффициентами и отрицательным дискриминантом не имеет действительных корней. Простейшее из них – уравнение X2+1=0. Поэтому приходится расширять множество действительных чисел, добавляя к нему новые числа. Эти новые числа вместе с действительными числами образуют множество, которое называют множеством комплексных чисел.

Информация о работе Комплексные числа и их применение