Геометрия Лобачевского и ее модели

Автор работы: Пользователь скрыл имя, 08 Июня 2013 в 17:17, курсовая работа

Краткое описание

Данная тема интересна по нескольким причинам: теория геометрии Лобачевского помогает взглянуть по-другому на окружающий нас мир, это интересный, необычный и прогрессивный раздел современной геометрии, она дает материал для размышлений – в ней не все просто, не все ясно с первого взгляда, чтобы ее понять, нужно обладать фантазией и пространственным воображением. Ситуация с геометрией Лобачевского и геометрией Евклида во многом похожа на ситуацию с Теорией относительности Эйнштейна и классической физикой. Геометрия Лобачевского и ОТП Эйнштейна это прогрессивные взаимосвязанные теории, выполняющиеся на огромных величинах и расстояниях, и остающимися верными на приближениях к нулю. В пространственной модели ОТП используется не обычная евклидовая плоскость, а искривленное пространство, на котором верна теория Лобачевского.

Содержание работы

I. Введение……………………………………………………….…………………3
II. Н.И.Лобачевский и его геометрия……………………………………….…… 6
III. Пятый Постулат Евклида…………………………………………….………..9
IV. Система аксиом Гильберта………………………………………….……….12
Группа 1. Аксиомы принадлежности…………………………………….12
Группа 2. Аксиомы порядка………………………………………………13
Группа 3. Аксиомы конгруэнтности……………………………………...14
Группа 4. Аксиомы непрерывности………………………………………15
Группа 5. Аксиома параллельности………………………………………16
V. Аксиома Лобачевского . параллельные прямые по Лобачевскому …….....17
VI. Теорема о существовании параллельных прямых……………………...….19
VII. Треугольники и четырехугольники на плоскости Лобачевского……...…24
VIII. Взаимное расположение двух прямых на плоскости Лобачевского…....26
IX. Три модели геометрии Лобачевского……………………………………….31
1) Модель Пуанкре……………………………………………………...…31
2) Модель Клейна………………………………………………………….32
3) Интерпритация Бельтрами………………………………...……...……34
X. Практическое применение геометрии Лобачевского………………...……..35
1. Теорема Пифагора…………………………………………………..……..35
2. Замечание к теореме Пифагора……………………………………...……36
3. Площадь треугольника…………………………………...…….…………37
4. Длина окружности и площадь круга………………………....…………..38
XI. Вывод………………………………………………………………………….38
XII. Список литературы..................................................................................…...40

Содержимое работы - 1 файл

kursovaya_geometriya_lobachevskogo_i_ee_modeli.doc

— 472.50 Кб (Скачать файл)

Группа V.  Аксиома   параллельности.

Пусть а — произвольная прямая, а А—точка, не лежащая на этой прямой. Тогда в плоскости, определяемой точкой А и прямой а, существует не более одной прямой, проходящей через А и не пересекающей а, эта аксиома эквивалентна V постулату Евклида.

На основе всех аксиом групп I—V можно построить теорию параллельных прямых по Евклиду, доказать теоремы о сумме углов треугольника и выпуклого многоугольника, изучить свойства параллелограммов и трапеций, построить теорию подобия и т. д. Заметим еще, что аксиомы групп I—V позволяют обосновать обычную тригонометрию, изучаемую в средней школе, а также декартову аналитическую геометрию. В частности, пользуясь теоремой Пифагора, для доказательства которой необходимо использовать аксиому V, выводится известная формула для вычисления расстояния между двумя точками по координатам этих точек. Кроме того, доказывается, что плоскость в пространстве определяется уравнением первой степени, а прямая — системой двух уравнений с тремя переменными. Таким образом, предоставляется  возможность приложить алгебру к доказательству теорем геометрии.

Отмечу, пользуясь аксиомами  групп I—V, можно ввести понятия площади многоугольника и объема многогранника.

  Геометрию, построенную на аксиомах групп I—IV, называют абсолютной геометрией. Вышеуказанные теоремы и определения являются теоремами абсолютной геометрии.

V. Аксиома Лобачевского. 

Параллельные прямые по Лобачевскому.

 

1. Геометрия Лобачевского (или гиперболическая геометрия) основана на аксиомах групп I—IV абсолютной геометрии и на следующей аксиоме Лобачевского.

V*. Пусть а — произвольная прямая, а A — точка, не лежащая на этой прямой. Тогда в плоскости, определяемой точкой А и прямой а, существует не менее двух прямых, проходящих через точку А и не пересекающих прямую а.

 

рис 1                                              рис 2

Из аксиомы V* непосредственно следует, что если даны произвольная прямая а и точка А, не лежащая на ней, то существует бесконечное множество прямых, проходящих через точку А и не пересекающих прямую а. В самом деле, по аксиоме V* существуют две прямые, которые обозначим через b и с, проходящие через точку А и не пересекающие прямую а (рис. 1). Прямые b и с образуют две пары вертикальных углов, которые на рисунке 2 обозначены цифрами 1, 2 и 3, 4. Прямая а не пересекает прямые b и с, поэтому все ее точки принадлежат внутренней области одного из четырех углов 1, 2, 3, 4, например внутренней области угла 1. Тогда, очевидно, любая прямая, проходящая через точку А и лежащая внутри вертикальных углов 3 и 4, не пересекает прямую а (например, прямые L и d на рис. 1).

Условимся считать, что все прямые, рассматриваемые нами, являются направленными прямыми. Поэтому мы их будем обозначать двумя буквами, например UV, считая, что точка U предшествует точке V. Предполагается также, что точки U и V выбраны так, что рассматриваемые нами точки на этой прямой лежат между точками U и V.

2. Введем следующее определение. Прямая АВ называется параллельной прямой CD, если эти прямые не имеют общих точек и, каковы бы ни были точки Р и Q, лежащие соответственно на прямых АВ и CD, любой внутренний луч1 угла QPB пересекает луч QD (рис. 2). Если прямая АВ параллельна прямой CD, то пишут так: AB||CD.

Имеет место следующий  признак параллельности прямых.

Теорема 1. Если прямые АВ и CD не имеют общих точек и существуют точки Р и Q, такие, что Р АВ и Q CD, и любой внутренний луч угла QPB пересекает луч QD, то AB||CD.

Для доказательства теоремы  достаточно установить, что, каковы бы ни были точки Р' и Q', лежащие соответственно на прямых АВ и CD, любой внутренний луч h угла Q'P'B пересекает луч Q'D. Возможны три случая: точка Р' совпадает с точкой Р; б) точка Р' принадлежит лучу РА; в) точка Р' принадлежит лучу РВ.

 Рассмотрим первые два случая,

а) Точка Р' совпадает с точкой Р. Если Q' — точка 
луча QC, то Q'P'B является объединением углов Q'PQ и QPB, по 
этому луч h либо лежит внутри угла Q'P'Q, либо совпадает с лучом PQ, либо лежит внутри угла QPB (рис. 3 а). В первом и во 
втором случаях луч h пересекает отрезок Q'Q, поэтому пересекает 
и луч Q'Q. В третьем случае луч h по условию теоремы пересекает 
луч QD и, следовательно, луч Q'D.

Если Q' — точка луча QD, то угол Q'P'B является частью угла QPB (рис. 3, б). Поэтому луч h является внутренним лучом угла QPB и по условию теоремы пересекает луч QD. Точка пересечения является точкой луча Q'D, так как h не проходит внутри угла QPQ' и поэтому не пересекает отрезок QQ'.

б) Точка Р' принадлежит лучу РА. Луч h лежит 
внутри угла Q'P'P, поэтому h пересекает отрезок PQ' в некоторой 
точке М (рис. 4). Отложим от луча РВ в полуплоскость, содержащую прямую CD, угол ВРМ', равный углу РР'М. Так как BPQ' — 
внешний угол треугольника PP'Q', то PP'Q' < LBPQ', поэтому 
РР'М < BPQ'. Отсюда следует, что РМ' — внутренний луч 
угла BPQ'. Следовательно, по доказанному (см. случай а) ) этот 
луч пересекает луч Q'D в некоторой точке Mi (рис. 4). Прямая Р'М 
пересекает сторону PQ' треугольника PQ'M\ и не пересекает сторо 
ну РМ\ (так как ВРМ1 = BP'M), поэтому по аксиоме Паша 
прямая Р'М пересекает отрезок Q'М1. Таким образом, луч h пересекает луч Q'D. Чтд.

 





 

Рис 3 а                                                              Рис.3 б



 





Рис. 4   

                                                              

VI. Теорема о существовании параллельных прямых.

Теорема 2. Пусть АВ — произвольная направленная прямая, а М — точка, не лежащая на ней. Тогда в плоскости МАВ существует одна и только одна прямая CD, проходящая через точку М и параллельная прямой АВ, т. е. CD||AB.                                                            



                      рис 5  .                                                   рис 6.

2. Рассмотрим перпендикуляр MN, проведенный из точки М к прямой АВ, и прямую MP, перпендикулярную к прямой MN (рис. 5). Мы предполагаем, что точки Р и В лежат по одну сторону от прямой MN. По лемме 1 прямые MP и NB не пересекаются.

Точки отрезка NP разобьем на два класса К1 и К2 по следующему закону. К первому классу отнесем те точки X этого отрезка, которые удовлетворяют условию: луч MX пересекает луч NB, а ко второму классу — все остальные точки отрезка NP. Докажем, что указанное разбиение удовлетворяет условиям а) и б) предложения Дедекинда.

а) Очевидно, N К1 и Р К2. Класс К1 содержит точки, отличные от N, например, точки X пересечения луча МХ1 с отрезком NP, где 
Х1 — произвольная точка луча NB (рис. 5). Класс K2 содержит 
точки, отличные от Р. В самом деле, по аксиоме V* существует пря 
мая MS1, отличная от прямой MP и не пересекающая прямую АВ. 
Прямая MS2, симметричная прямой MS1 относительно прямой MN, 
также не пересекает прямую АВ (рис. 5). Одна из прямых MS1 или 
MS2 проходит внутри угла NMP, поэтому пересекает отрезок NP в некоторой точке Y, принадлежащей классу К2

б) Пусть X — произвольная точка класса К1, отличная от N, а 
Y — точка второго класса. Тогда N — X — У, так как в противном 
случае имеем N — Y — X, что означает, что луч MY — внутренний 
луч угла NMX. Отсюда следует, что луч MY пересекает отрезок 
1 т. е. У К1.

Итак, на множестве точек  отрезка NP имеем дедекиндово сечение. Пусть точка D производит это сечение. Докажем, что D К2. Предположим противное: D К1 . Тогда луч MD пересекает луч NB в некоторой точке D1 (рис. 6). Возьмем на луче NB точку D’1 так, чтобы N — D1— D’1. Луч MD’1 пересекает отрезок DP в некоторой точке D' (рис. 6), которая принадлежит классу K1. Полученный вывод противоречит предложению Дедекинда. Таким образом, D К2. На прямой MD возьмем точку С так, чтобы С — М — D. По теореме 1 CD||AB.

Остается доказать, что CD — единственная прямая, проходящая через точку М и параллельная прямой АВ. Пусть, напротив, C’D' — другая прямая, проходящая через точку М и параллельная прямой АВ. По определению параллельных прямых внутренние лучи углов NMD и NMD' пересекают луч NB, поэтому лучи MD, MD' лежат в той же полуплоскости с границей MN, что и луч NB. Отсюда мы приходим к выводу, что либо MD — внутренний луч угла NMD', либо MD' — внутренний луч угла NMD.



Но тогда одна из  прямых CD или  C'Dr пересекает   прямую   АВ,   что противоречит определению параллельности прямых.

 

 

                                                                                                                                                                                                                                                   рис.          7

                                                                                             А           N                B

 

3. Пусть М — точка, не лежащая на прямой a, a MN — перпендикуляр, проведенный из точки М на прямую а. Выберем на прямой а две точки А и В так, чтобы А—N — В. Из теоремы 2 следует, что через точку М проходит единственная прямая CD, параллельная направленной прямой АВ, и единственная прямая EF, параллельная направленной прямой ВА  (рис. 7).

В ходе доказательства теоремы 2 мы установили, что углы DMN и FMN острые, поэтому CD и EF — различные прямые. Докажем, что DMN = FMN. Пусть, напротив, DMN FMN, например DMN > FMN. Рассмотрим луч MF', симметричный лучу MF относительно прямой MN (луч MF' не изображен на рис. 7). Этот луч является внутренним лучом угла DMN. Так как MF не пересекает прямую АВ, то и MF' не пересекает эту прямую. Но это противоречит определению параллельности прямых CD и АВ.

Таким образом, через  каждую точку М, не лежащую на данной прямой а, проходят две прямые, параллельные прямой а, в двух разных направлениях. Эти прямые образуют равные острые утлы с перпендикуляром MN, проведенным из точки М к прямой а. Каждый из этих углов называется углом параллельности в точке М относительно прямой а.

Докажем, что величина угла параллельности вполне определяется расстоянием от точки М до прямой а. Для этого обратимся к рисунку 219. На этом рисунке NMD — угол параллельности в точке М относительно прямой a, a NMD’ — угол параллельности' в точке М'

относительно прямой а’ , = NMD, x = MN, a/ = N'M'D',  x' =M/N/
Докажем, что если х = х’, то = '. Пусть, напротив, /
например а' > . Тогда существует внутренний луч h’ угла N'M'D', 
такой, что угол между лучами M'N' и h равен . Луч h’ пересекает 
прямую а' в некоторой точке F’. На прямой а от точки N отложим 
отрезок NF = N'F так, чтобы точки F и D лежали в одной полуплоскости с границей MN. Получим треугольник MNF, равный треугольнику M'N'F' (треугольник MNF на рис. 8 не изображен). Так



           М м                          
                

рис.8

как NMF = , то лучи MD и MF совпадают. Приходим к выводу, что прямые MD и пересекаются. Это противоречит определению параллельных прямых. Таким образом, = ’.

Итак, — функция от х: = П (х). Она называется функцией Лобачевского и играет существенную роль в гиперболической геометрии. Из предыдущего изложения ясно, что функция П (х) определена для каждого положительного х и что 0 < II (х) < П/2 .

Н. И. Лобачевский получил  аналитическое выражение этой функции:

где k — некоторое положительное число.

Из этой формулы следует, что П(х)— монотонно убывающая непрерывная функция. Из этой формулы следует также, что П(х) принимает все значения, лежащие между 0 и П/2 . Другими словами, любой острый угол является углом параллельности в некоторой точке относительно данной прямой.

4. В геометрии Лобачевского существует зависимость между угловыми и линейными величинами; в этом существенное отличие геометрии Лобачевского от геометрии Евклида. Так, в геометрии Лобачевского нет подобия фигур; в частности, треугольники с соответственно равными углами равны. Еще одна особенность геометрии Лобачевского связана с единицей измерения длин. В геометрии Евклида существуют абсолютные константы угловых величин, например прямой угол или радиан, в то время как линейных абсолютных констант не существует. Для того чтобы длины отрезков выразить числами, необходимо выбрать единицу измерения длин. В качестве такой единицы может быть выбран произвольный отрезок. В противоположность этому в геометрии Лобачевского нет в этом необходимости, так как, имея естественную единицу измерения углов, можно условиться о выборе естественной единицы длин. Например, за единицу длины можно выбрать отрезок, которому соответствует угол параллельности, равный  П/4.

VII. Треугольники и четырехугольники на плоскости Лобачевского.

1. Все теоремы о  треугольниках, которые в евклидовой  геометрии доказывают без помощи  аксиомы параллельности, имеют место также в геометрии Лобачевского. Подавляющее большинство теорем относится именно к этому типу. Теоремы о равнобедренных треугольниках, три признака равенства треугольников, теорема о внешнем угле треугольника, теоремы о соотношениях между сторонами и углами, теоремы о пересечении биссектрис внутренних углов треугольника и о пересечении

 

             



рис 9                                                          рис 10

Информация о работе Геометрия Лобачевского и ее модели