Автор работы: Пользователь скрыл имя, 26 Января 2012 в 18:09, шпаргалка
Работа содержит ответы на вопросы по дисциплине "Гидравлика".
Сумму правой части (1) также называют гидродинамическим напором Н. В случае невязкой жидкости U2= xυ2. Теперь остается учесть потери напора hпр жидкости при ее движении к сечению 2–2 (или 3–3).
Например, для сечения 2–2:
Следует отметить, что условие плавной изменяемости должно быть выполнено только в сечениях 1–1 и 2–2 (только в рассматриваемых): между этими сечениями условие плавной изменяемости необязательно.
В формуле (2) физический смысл всех величин приведен ранее.
В основном все так же, как и в случае с невязкой жидкостью, основная разница в том, что теперь напорная линия Е = Н= Z + p/ρg + Xυ2/2g не параллельна к горизонтальной плоскости сравнения, поскольку имеет места потери напора
Степень потери напора hпр по длине называют гидравлическим уклоном J. Если потеря напора hпр происходит равномерно, то
Числитель в формуле (3) можно рассматривать как приращение напора dH на длине dl.
Поэтому в общем случае
Знак минус перед dH/dl – потому, что изменение напора по его течению отрицательно.
Если рассмотреть изменение пьезометрического напора Z + p/ρg, то величину (4) называют пьезометрическим уклоном.
Напорная линия, она же линия удельной энергии, находится выше пьезометрической линии на высоту u2/2g: здесь то же самое, но только разница между этими линиями теперь равна xυ2/2g. Эта разница сохраняется также при безнапорном движении. Только в этом случае пьезометрическая линия совпадает со свободной поверхностью потока.
Для того, чтобы получить уравнение Бернулли, придется определить его для элементарной струйки при неустановившемся движении вязкой жидкости, а затем распространять его на весь поток
Прежде всего, вспомним основное отличие неустановившегося движения от установившегося. Если в первом случае в любой точке потока местные скорости изменяются по времени, то во втором случае таких изменений нет.
Приводим уравнение Бернулли для элементарной струйки без вывода:
здесь учтено, что υω = Q; ρQ = m; mυ = (КД)υ.
Так же, как и в случае с удельной кинетической энергией, считать (КД)υ не таккто просто. Чтобы считать, нужно связать его с (КД)υ. Для этого служит коэффициент количества движения
Коэффициент a′ принято называть еще и коэффициентом Бусинеска. С учетом a′, средний инерционный напор по живому сечению
Окончательно уравнение Бернулли для потока, получение которого и являлось задачей рассматриваемого вопроса имеет следующий вид:
Что касается (5), то оно получено из (4) с учетом того, что dQ = wdu; подставив dQ в (4) и сократив ω, приходим к (6).
Отличие hин от hпр прежде всего в том, что оно не является необратимым. Если движение жидкости с ускорением, что значит dυ/t > 0, то hин > 0. Если движение замедленное, то есть du/t < 0, то hин < 0.
Уравнение (5) связывает параметры потока только в данный момент времени. Для другого момента оно может уже оказаться не достоверным.
Как нетрудно было убедиться в вышеприведенном опыте, если фиксировать две скорости в прямом и обратном переходах движения в режимы ламинарное → турбулентное, то
υ1 ≠ υ2
где υ1 – скорость, при которой начинается переход из ламинарного в турбулентный режим;
υ2 – то же самое при обратном переходе.
Как правило, υ2 < υ1. Это можно понять из определения основных видов движения.
Ламинарным (от лат. lamina – слой) считается такое движение, когда в жидкости нет перемешивания частиц жидкости; такие изменения в дальнейшем будем называть пульсациями.
Движение жидкости турбулентное (от лат. turbulentus – беспорядочный), если пульсация местных скоростей приводит к перемешиванию жидкости.
Скорости перехода υ1, υ2 называют:
υ1– верхней критической скоростью и обозначают как υв. кр, это скорость, при которой ламинарное движение переходит в турбулентное;
υ2– нижней критической скоростью и обозначают как υн. кр, при этой скорости происходит обратный переход от турбулентного к ламинарному.
Значение υв. кр зависит от внешних условий (термодинамические параметры, механические условия), а значения υн. кр не зависят от внешних условий и постоянны.
Эмпирическим путем установлено, что:
где V – кинематическая вязкость жидкости;
d – диаметр трубы;
R–
коэффициент
В честь исследователя вопросов гидродинамики вообще и данного вопроса в частности, коэффициент, соответствующий uн. кр, называется критическим числом Рейнольдса Reкр.
Если изменить V и d, то Reкр не изменяется и остается постоянным.
Если Re< Reкр, то режим движения жидкости ламинарный, поскольку υ < υкр; если Re > Reкр, то режим движения турбулентный из-за того, что υ> υкр.
В теории турбулентного движения очень многое связано с именем исследователя этого движения Рейнольдса. Рассматривая хаотическое турбулентное движение, он представил мгновенные скорости, как некоторые суммы. Эти суммы имеют вид:
где ux, uy, uz – мгновенные значения проекций скорости;
p, τ – то же самое, но для напряжений давления и трения;
черта у величин наверху означает, что параметр усреднен по времени; у величин u′x, u′y, u′z, p′, τ′ черта сверху означает, что имеется в виду пульсационная составляющая соответствующего параметра («добавка»).
Осреднение параметров по времени осуществляется по следующим формулам:
– интервал времени, в течение которого проводится осреднение.
Из формул (1) следует, что пульсируют не только проекции скорости, но и нормальные р ик асательные τ напряжения. Значения усредненных во времени «добавок» должны быть равны нулю: например для х-ой компоненты:
Интервал времени Т определяют достаточным, чтобы при повторном осреднении значение «добавки» (пульсирующей составляющей) не изменилось.
Турбулентное движение считается неустановившимся движением. Несмотря на возможное постоянство осредненных параметров, мгновенные параметры все же пульсируют. Следует запомнить: осредненная (по времени и в конкретной точке) и средняя (в конкретном живом сечении) скорости – не одно и то же:
где υ= Q/w;
Q – расход жидкости, которая течет со скоростью υ через w.
Принят стандарт, который называется среднеквадратическим отклонением. Для х
Чтобы получить формулу для любого параметра «добавки» из формулы (1), достаточно заменить ux в (1) на искомый параметр.
Среднеквадратичное отклонение можно относить к следующим скоростям: усредненная местная скорость данной точки; средняя по вертикали; средняя поживому сечению; максимальная скорость.
Обычно максимальная и средняя по вертикали скорости не используются; используются две из вышеперечисленных характерных скорости. Кроме них, используют также динамическую скорость
где R– гидравлический радиус;
J – гидравлический уклон.
Среднеквадратичное отклонение, отнесенное к средней скорости, есть, например, для х-ой компоненты:
Но лучшие результаты получаются, если среднеквадратичное отклонение относить к ux, т. е. динамической скорости, например
Определим степень (интенсивность) турбулентности, как называют величину e
Однако лучшие результаты получаются, если за масштаб скорости (то есть за характерную скорость) взять динамическую скорость ux.
Еще одним свойством турбулентности является частота пульсаций скорости. Средняя частота пульсации в точке с радиусом r от оси потока:
где N – половина экстремума вне кривой мгновенных скоростей;
Т – период осреднения;
T/N = 1/w– период пульсации.
Все же, несмотря на вышеперечисленные и другие особенности, о которых не сказано из-за их невостребованности, основным признаком турбулентного движения является перемешивание частиц жидкости.
Принято об этом перемешивании с точки зрения количества говорить как о перемешивании молей жидкости.
Как мы убедились выше, с ростом числа Re интенсивность турбулентности нe растет. Несмотря на это, все же, например, у внутренней поверхности трубы (или у любой другой твердой стенки) существует некоторый слой, в пределах которого все скорости, в том числе пульсационные «добавки», равны нулю: это очень интересное явление.
Этот слой принято называть вязким подслоем потока.
Само собой на границе соприкосновения с основной массой потока этот вязкий подслой все же имеет некоторую скорость. Следовательно, все изменения в основном потоке передаются и в подвязкий слой, но их значение очень мало. Это позволяет считать движение слоя ламинарным.
Ранее, считая, что эти передачи в подвязкий слой отсутствуют, слой назвали ламинарной пленкой. Теперь нетрудно убедиться, что с точки зрения современной гидравлики ламинарность движения в этом слое относительная (интенсивность ε в подвязком слое (ламинарной пленке) может достигать значения 0,3. Для ламинарного движения это достаточно большая величина)
Подвязкий слой εв очень тонкий по сравнению с основным потоком. Именно наличие этого слоя порождает потери напора (удельной энергии).