Наследственность. Представления о генетическом коде. Гены индивидуальности

Автор работы: Пользователь скрыл имя, 23 Декабря 2010 в 15:39, курсовая работа

Краткое описание

В своей курсовой работе на тему “ Наследственность. Представления о генетическом коде. Гены индивидуальности ” я рассказала о первых шагах генетики , о сегодняшнем дне этой увлекательной науки и о том , чего ждем мы от нее в ближайшем будущем . Также подробно были рассмотрены достижения современной генетики на молекулярном уровне , которая включает в себя биологию и генетику , законы передачи наследственных признаков и структуру генетического вещества , структуру и функции гена , гены и согласованность клеточных функций , наследственность и эволюцию . В этой работе ведется ознакомление с огромным вкладом генетики в соседние с ней области биологии – учение о происхождении жизни , систематику и эволюцию организмов.

Содержание работы

Аннотация...........................................................................................................................3
Предисловие..........................................................................................................................4
Наследственность............................................................................................................6
Условные рефлексы........................................................................................................7
Теория наследственности Вейсмана.........................................................................8
Методы Гальтона.........................................................................................................9
Хромосомная теория наследственности..................................................................10
Генетические карты хромосом..................................................................................10
Генетика пола...............................................................................................................13
Нехромосомная теория наследственности.........................................................14
Молекулярная генетика. Генетическая информация. Генетический код.....14
Наследственность и эволюция..................................................................................17
Генетика человека.......................................................................................................19
Наследственность и среда.......................................................................................20
Болезни, связанные с мутациями............................................................................21
Лечение и профилактика наследственных болезней............................................24
Генетическая инженерия..........................................................................................25
Гены индивидуальности............................................................................................28
Заключение.......................................................................................................................30
Терминологический словарь.........................................................................................32
Список используемой литературы............................................................................36

Содержимое работы - 1 файл

Оглавление.docx

— 86.53 Кб (Скачать файл)

а) выделение в  организме отдельных признаков  или свойств, наследование которых  может быть проанализировано соответствующими методами; 

б) детерминация этих свойств особыми дискретными  единицами наследственности, локализованными  в структурах клетки (ядра) (Дарвин называл  их геммулами, Де Фриз-пангенами, Вейсман-детерминантами). В современной генетике общепринятым стал предложенный В. Иогансеном (1909) термин ген. 

“ Ген-элементарная единица наследственности, представляющая отрезок молекулы дезоксирибонуклеиновой кислоты - ДНК (у некоторых вирусов- рибонуклеиновой кислоты-РНК). Каждый ген определяет строение одного из белков живой клетки и тем самым участвует в формировании п ризнака или свойств организма..”3 

Методы Гальтона. Особняком стояли попытки установления закономерностей наследственности статистическими методами. Один из создатеей биометриии-Ф. Гальтон применил разработанные им методы учета корреляции и регрессии для установления связи между родителями и потомками. Он сформулировал следующие законы наследственности (1889): 

- регрессии, или  возврата к предкам 

- анцестральной наследственности, то есть доли наследственности предков в наследственности потомков. 

Законы носят статистический характер, они применимы лишь к  совокупностям организмов и не раскрывают сущности и причин наследственности, что могло быть достигнуто только с помощью экспериментального изучения наследственности разными методами и прежде всего гибридологическим  анализом, основы которого были заложены еще Менделем. Так были установлены  закономерности наследования качественных признаков: моногибридное- различие между скрещиваемыми формами зависит лишь от одной пары генов, дигибридное- от двух , полигибридное- от многих. При анализе наследования количественных признаков отсутствовала четкая картина расщепления , что давало повод выделять особую, так называемую слитную наследственность и объяснять ее смещением наследственных плазм скрещиваемых форм. В дальнейшем гибридологический и биометрический анализ наследования количественных признаков показал, что и слитная наследственность сводится к дискретной, но наследование при этом полигенное. В этом случае расщепление трудно обнаружить, так как оно ппроисходит по многим генам, действие которых на признак осложняется сильным влиянием условий внешней Среды. Таким образом, хотя признаки можно разделять на качественные и количественные, термины “кчественная” и “количественная” наследственность не оправданы, так как обе категории наследственности принципиально одинаковы. 

Развитие цитологии  пртивело к постановке вопроса о материальных основах наследственности. Впервые мысль о роли ядра как носителя наследственности была сформулирована 

О. Гертвигом (1884) и Э. Страсбургером(1884) на основании изучения процесса оплодотворения. Т. Бовери (1887) установил индивидуальность хромосом и развил гипоьезу о их качественном различии. Он же, а также Э. ван Бенедет (1883) установили уменьшение количества хромосом вдвое при образовании половых клеток в мейозе. Американский ученый У. Сеттон (1902) дал цитологическое объяснение закону Менделя о независимом наследовании приизнаков. Однако подлинное обоснование хромосомной теории наследственности было дано в работах Т. Моргана и его школы (начиная с 1911), в которых было показано точное соответствие между генетическими и цитологическими данными. В опытах на дрозофилебыло установлено нарушениет независимого распределения признаков-их сцепленное наследование. Это явление было объяснено сцеплением генов, то есть нахождением генов, определяющих эти признаки, в одной определенной паре хромосом. Изучение частоты рекомбинаций между сцеплеными генами (в результате кроссинговера) позволило составить карты расположения генов в хромосомах. 

Генетические карты  хромосом - схемы относительного располо­жения сцепленных между собой на­следств. факторов — генов. Генетические карты хромосом ото­бражают реально существующий линей­ный порядок размещения генов в хромо­сомах и важны как в теоретических исследо­ваниях, так и при проведении селекцион­ной работы, т. к. позволяют сознательно подбирать пары признаков при скрещи­ваниях, а также предсказывать особенности наследования и проявления раз­личных признаков у изучаемых орга­низмов. Имея Генетические карты хромосом, можно по насле­дованию «сигнального» гена, тесно сцеп­ленного с изучаемым, контролировать. передачу потомству генов, обусловли­вающих развитие трудно анализируемых признаков; напр., ген, определяющий сморщенный эндосперм у кукурузы и на­ходящийся в 9-й хромосоме, сцеплен с геном, определяющим пониженную жизнеспособность растения. Многочис­ленные факты отсутствия (вопреки законам Менделя) независимого рас­пределения признаков у гибридов второ­го поколения были объяснены хромосом­ной теорией наследственности. Гены, расположенные в одной хромосоме, в большинстве случаев наследуются сов­местно и образуют одну группу сцепле­ния, количество к-рых, таким образом, соответствует у каждого организма гаплоидному числу хромосом. Американский генетик Т. X. Морган показал, однако, что сцеп­ление генов, расположенных в одной хромосоме, у диплоидных организмов не 

абсолютное; в некорых случаях перед образованием половых клеток между однотипными, или гомологичными, хромосомами происходит об­мен соответствии. участками; этот процесс носит назв. перекреста, или кроссинговера. Обмен участками хромосом (с на­ходящимися в них генами) происходит с различной вероятностью, зависящей от расстояния между ними (чем дальше друг от друга гены, тем выше вероят­ность кроссинговера и, следовательно, рекомбинации). Генетический анализ позво­ляет обнаружить перекрест только при различии гомологичных хромосом по составу генов, что при кроссинговере приводит к появлению новых генных комбинаций. Обычно расстояние между генами на Генетических картах хромосом выражают как процент крос­синговера (отношение числа мутантных особей, отличающихся от родителей иным сочетанием генов, к общему кол-ву изу­ченных особей); единица этого расстоя­ния — морганида — соответствует часто­те кроссинговера в 1 %. 

Итак, выделим основные положения хромосомной теории наследственности: 

1. Гены располагаются  в хромосомах, различные хромосомы  содержат неодинаковое чис ло генов, набор генов каждой из негомологичных хромосом уникален. 

2. Гены в хромосоме  расположены линейно, каждый ген  занимает в хромосоме определенный  локус (место). 

3. Гены , расположенные в одной хромосоме, образуют группу сцепления и вместе (сцеплено) передаются потомкам, число групп сцепления равно гаплоидному набору хромосом. 

4. Сцепление не  абсолютно, так как в профазе  мейоза может происходить кроссинговер  и гены, находящиесяв одной хромосоме, разобщаются. Сила сцепления зависит от расстояния между генами в хромосоме: чем больше расстояние, тем меньше сила сцепления. и наоборот. Расстояние между генами измеряется в процентах кроссинговера. 1% кроссинговера соответтствует одной морганиде.4 

Генетические карты  хромосом составляют для каждой пары гомологичных хромосом. Группы сцеп­ления нумеруют последовательно, по мере их обнаружения. Кроме номера группы сцепления, указывают полные или сокра­щённые назв. мутантных генов, их рас­стояния в морганидах от одного из концов хромосомы, принятого за нулевую точ­ку, а также место центромеры. Соста­вить Генетические карты хромосом можно только для объек­тов, у которых изучено большое число мутантных генов. Например, у дрозофилы идентифицировано свыше 500 генов, локали­зованных в её 4 группах сцепления, у кукурузы — около 400 генов, распреде­лённых в 10 группах сцепления (рис. 1). У менее изученных объектов число об­наруженных групп сцепления 

меньше гаплоидного  числа хромосом. Так, у до­мовой мыши выявлено около 200 генов, образующих 15 групп сцепления (на са­мом деле их 20); у кур изучено пока все­го 8 из 39. У человека из ожидаемых 23 групп сцепления (23 пары хромосом) идентифицировано только 10, причём в каждой группе известно небольшое число генов; наиболее подробные карты составлены для половых хромосом. 

У бактерий, к-рые являются гаплоидными организмами, имеется одна, чаще всего непрерывная, кольцевая хромосома и все гены образуют одну группу сцепле­ния (рис. 2). При переносе генетич. ма­териала из клетки-донора в клетку-ре­ципиент, например при конъюгации, коль­цевая хромосома разрывается и образующаяся линейная структура переносится из одной бактериальной клетки в другую (у кишечной палочки в течение 110-120 мин). Искусственно прерывая про­цесс конъюгации, можно по возникшим типам рекомбинантов установить, ка­кие гены успели перейти в клетку-реци­пиент. В этом состоит один из методов построения Генетических карт хромосом бактерий, детально разработанных у ряда видов. Ещё более детализированы Генетические карты хромосом нек-рых бакте­риофагов 
 

Генетика пола. Количество групп сцепленных генов оказалось  равным количеству пар хромосом, присущих данному виду. Важнейшие доказательства хромосомной теории наследственности были получены при изучении наследования, сцепленного с полом. Ранее цитологи открыли в хромосомных наборах ряда видов жиивотных особые , так называемые половые хромосомы, которыми самки отличаются от самцов. В одних случаях самки имеют 2 одинаковые половые хромосомы(XX), а самцы-разные(XY), в других - самцы-2 одинаковые(XX, или ZZ), а самки - разные(XY, или ZW). Пол с одинаковыми половыми хромосомами называется гомогаметным , с разными - гетерогаметным. Женский пол гомогаметен , а мужской гетерогаметен у некоторых насекомых ( в том числе у дрозофилы) и всех млекопитающих. Обратное соотношение - у птиц и бабочек. Ряд признаков у дрозофилы наследуется в 

строгом соответствии с передачей потомству X-хромосом. Самка дрозофилы, проявляюща 

рецесивный признак , например белую окраску глаз, в силу гомозиготности по этому гену, находящимуся в X-хромосоме, передает белую окраску глаз всем сыновьям, так как они получают свою X-хромосому только от матери. В случае гетерозиготности по рецессивному сцепленному с полом признаку самка передает его половине сыновей. При противоположном определении пола (самцы XX, или ZZ; самки-XY, или ZW) особи мужского пола передают сцепленные с полом признаки дочерям, получающим свою X( =Z ) хромосому от отца. Иногда в результате нерасхождения половых хромосом при мейозе возникают самки строения XXY и самцы XYY. Возможны также случаи соединения X-хромосом концами; тогда самки передают сцепленные X-хромосомы своим дочерям, у которых и проявляются сцепленные с полом признаки. Сыновья же похожи на отцов (такое наследование называется гологеническим ). Если наследуемые гены находятся в Y-хромосоме, то определяемые ими признаки передаются только по мужской линии - от отца к сыну (такое наследование называется голандрическим). Хромосомная теория наследственности вскрыла внутриклеточные механизмы наследственности, дала точное и единое объяснение всех явлений наследования при половом размножении, объяснила сущность изменений наследственности, то есть изменчивости. 

Нехромосомная теория наследственности. Первенствующая роль ядра и хромосом в наследственности не исключает передачи некоторых  признаков и через цитоплазму, в которой обнаружены структуры, способные к самовоспроизведению.Единицы цитоплазматической (нехромосомной) наследственности отличаются от хромосомных тем, что они не расходятся при мейозе. Поэтому потомство при нехромосомной наследственности воспроизводит признаки только одного из родителей (чаще матери ). Таким образом , различают ядерную наследственность, связанную с передачей наследственных признаков, находящихся в хромосомах ядра (иногда ее называют хромосомной наследственностью ), и внеядерную наследственность, зависящую от передачи самовоспроизводящихся структур цитоплазмы. Ядерная наследственность реализуется и при вегетативном размножении , но не сопровождается перераспределением генов, что наблюдается при половом размножении, а обеспечивает константную передачу признаков из поколения в поколение, нарушаемую только соматическими мутациями. 

Молекулярная генетика. Применение новых физических и химических методов, а также использование  в качестве объектов исследования бактерий и вирусов резко повысили разрешающую  способность генетических экспериментов, привели к изучению наследственности на молекулярном уровне и бурному  развитию молекулярной генетики. Впервые  Н. К. Кольцов (1927 г) выдвинул и обосновал  представления о молекулярной основе наследственности и о матричном  способе размножения “наследственных  молекул”.В 40-х гг. 20 в. была экспериментально доказана генетическая роль дизоксирибонуклеиновой кислотиы ( ДНК ) , а в 50-60-х гг. установлена ее молекулярная структура и выяснены принципы кодирования генетической информации. Генетическая информация,заложенная в наследственных структурах организмов (в хромосомах, цитоплазме, клеточных организмах), получаемая от предков в виде совокупности генов ин­формация о составе, строении и харак­тере обмена составляющих организм ве­ществ (прежде всего белков и нуклеино­вых кислот) и связанных с ними функ­циях. У многоклеточных форм при по­ловом размножении генетическая информация передаётся из поколения в поколение через посредство половых клеток — гамет, единственная функция к-рых — передача и хранение генетической информации. У микроорганизмов и вирусов имеются особые типы ее передачи . Генетическая информация заключена преимущественно в хромосо­мах, где она зашифрована в определён­ной линейной последовательности нуклеотидов в молекулах дезоксирибонуклеиновой кислоты — ДНК (генетический код). Генетический код - это система зашиф­ровки наследственной информации в молекулах нуклеиновых кислот, реали­зующаяся у животных, растений, бакте­рий и вирусов в виде последовательности нуклеотидов. В природных нуклеино­вых кислотах — дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК)—встре­чаются 5 распространённых типов нуклео­тидов (по 4 в каждой нуклеиновой к-те), разлчающихся по входящему в их со­став азотистому основанию . В ДНК встречаются основания: 

Информация о работе Наследственность. Представления о генетическом коде. Гены индивидуальности