Автор работы: Пользователь скрыл имя, 22 Февраля 2011 в 12:15, курсовая работа
Цель курсовой работы изучить некоторые методы приближённого решения матричных игр, обосновать их алгоритмы, и, по возможности, реализовать на языке программирования.
Введение 2
Теория игр. 3
КЛАССИФИКАЦИЯ ИГР. 3
ГЛАВА 1. МАТРИЧНЫЕ ИГРЫ. 4
§ 1. РЕШЕНИЕ МАТРИЧНЫХ ИГР В ЧИСТЫХ СТРАТЕГИЯХ. 4
§ 2. СМЕШАННОЕ РАСШИРЕНИЕ МАТРИЧНОЙ ИГРЫ. 7
§ 3. СВОЙСТВА РЕШЕНИЙ МАТРИЧНЫХ ИГР. 8
§ 4. ИГРЫ ПОРЯДКА 2 х 2. 12
§5. СВЕДЕНИЕ МАТРИЧНОЙ ИГРЫ К ЗАДАЧЕ 13
ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ 13
Глава 2. КООПЕРАТИВНЫЕ ИГРЫ 16
§ 1. ПЕРЕЧИСЛЕНИЕ ХАРАКТЕРИСТИЧЕСКИХ ФУНКЦИЙ 20
С МАЛЫМ ЧИСЛОМ ИГРОКОВ. 20
Заключение 33
Список использованной литературы 34
Это означает, что точка x должна лежать ближе к i-й вершине основного треугольника (см. рис. 7), чем прямая
Из неравенства (10) путём суммирования получим
x1 + x2 + x3 £ 3 - (С1 + С2 + С3)
или, учитывая, что x1 + x2 + x3 = 1, получим
Неравенство (12) является необходимым условием существования непустого с-ядра. С другой стороны, если (12) выполняется, то можно взять такие неотрицательные e1, e2, e3, чтобы
и положить
xi
= 1 -
Ci - ei
(i =
Такие значения xi и удовлетворяют неравенствам (10), т.е. такой делёж x = (x1, x2, x3) принад- лежит с-ядру.
Геометрически
непустое с-ядро является заштрихованным
треугольником (рис. 7), со сто- ронами, выраженными
уравнениями (11)
3
1
Рис. 8
при условии, что выполняется соотношение
x1 + x2 + x3 = 1,
и решения любой пары уравнений (11) являются неотрицательными. Так, например, рассмот- рим систему
x1 = 1 - С1, x2 = 1 - С2.
Поскольку 0 £ С1 £ 1, 0 £ С2 £ 1, то x1, x2 ³ 0. Отсюда получаем
x3 = 1 - x1 - x2 = 1 - (1 - С1) - (1 - С2) = С1 + С2 - 1.
Для того, чтобы было x3 ³ 0, необходимо чтобы
С1 + С2 - 1 ³ 0
или
С1 + С2 ³ 1.
В этом случае с-ядро представлено на рис.7 в виде заштрихованного треугольника внутри основного треугольника. Аналогично рассматриваются остальные возможные варианты сочета- ний неравенств. Например, если С1 + С2 < 1, то с-ядро имеет вид заштрихованного четырёх- угольника внутри основного треугольника (рис.8). Вообще многогранник, представляющий с-ядро, образуется как выпуклый многогранник пересечением прямых (11) и строк основного треугольника. Если, например, выполняются неравенства
С1 + С2 < 1; С2 + С3 < 1; С1 + С3 < 1,
то
с-ядро представляется в виде шестигранника,
заштрихованного на рис.9.
Очевидно,
в решение кооперативной игры
должны входить дележи, лучшие с
определён- ной точки зрения. Так,
дележи, входящие в с-ядро, являются
устойчивыми в несколько пассив- ном смысле,
т.е. при этих обстоятельствах нет оснований
отклоняться от такого дележа. Одна- ко,
найти делёж, который не только не доминировался
бы какими-либо другими дележами, но сам
доминировал бы любой другой делёж, не
удаётся. Поэтому решение отыскивают на
пути расширения класса дележей . И это
расширение состоит в том, что решением
игры должен быть не один делёж, а некоторое
их множество.
Дж. фон Нейман и О. Моргенштерн предложили потребовать от множества дележей, которое принимается в качестве решения кооперативной игры следующие два свойства: внут- реннюю устойчивость, состоящую в том, чтобы дележи из решений нельзя было противопоста- вить друг другу, и внешнюю устойчивость, состоящую в возможности каждому отклонению от решения противопоставлять некоторый делёж, принадлежащий решению. В результате мы приходим к следующему определению.
Определение. Решением по Нейману-Моргенштерну (Н-М-решением) кооперативной игры называется множество R дележей в нём, обладающее следующими свойствами :
1) внутренняя устойчивость: никакие два дележа из R не доминируют друг друга;
2) внешняя устойчивость: каков бы ни был делёж S не принадлежащий R, найдётся делёж r, принадлежащий R, который доминировал бы S.
Содержательная
интерпретация Н-М-решения
Теорема. Если в кооперативной игре существует с-ядро C и Н-М-решение R, то CÌ R.
Свойства Н-М-решений.
Н-М-решение кооперативной игры не может состоять только из одного дележа, т.к. в этом случае характеристическая функция игры несущественная.
Недостатки Н-М-решения.
1. Известны
примеры кооперативных игр,
2. Кооперативные игры, если не имеют Н-М-решения, то, как правило, более одного. Поэтому принцип оптимальности, приводящий к Н-М-решению, не является полным: он, вообще говоря, не в состоянии указать игрокам единственной системы норм распределения выигрыша.
3. Решения
существенных кооперативных
4. Понятие Н-М-решения отражает только в очень малой степени черты справедливости.
Перечисленные недостатки отражают положение дел в действительности: большинство экономических и социальных проблем допускает множественные решения, и эти решения не всегда поддаются непосредственному сравнению по их предпочтительности.
Перечисленные недостатки Н-М-решения коалиционных игр способствуют поискам новых подходов. Одним из таких подходов является подход Шепли, суть которого в том, что он строиться на основании аксиом, отражающих справедливость дележей.
Определение. Носителем игры с характеристической функцией u называется такая коали-ция T, что
u(S) = u(S Ç T)
для любой коалиции S.
Смысл носителя T состоит в том, что любой игрок, не принадлежащий T, является нейтральным, он не может ничего внести в коалицию и ему ничего не следует выделять из общих средств.
Определение. Пусть u – характеристическая функция кооперативной игры n игроков, p – любая перестановка множества N игроков. Через pu обозначим характеристическую функцию и та- кой игры, что для коалиции S = {i1, i2, ..., iS} будет
u ({p( i1), p( i2), ..., p( iS)}) = u(S).
Содержательный
смысл функции pu состоит в том, что если
в игре с характеристической функцией u
поменять местами игроков согласно перестановке p,
то получим игру с характерис- тической
функцией pu.
Аксиомы Шепли.
1о. Аксиома эффективности. Если S – любой носитель игры с характеристической функцией u, то
Иными словами, “справедливость требует”, что при разделении общего выигрыша носителя игры ничего не выделять на долю посторонних, не принадлежащих этому носителю, равно как и ничего не взимать с них.
2о. Аксиома симметрии. Для любой перестановки p и iÎN должно выполняться
т.е. игроки, одинаково входящие в игру, должны “по справедливости” получать одинаковые выигрыши.
3о. Аксиома агрегации. Если есть две игры с характеристическими функциями u¢ и u¢¢, то
j i (u¢ + u¢¢) = j i (u¢) + j i (u¢¢),