Автор работы: Пользователь скрыл имя, 22 Февраля 2011 в 12:15, курсовая работа
Цель курсовой работы изучить некоторые методы приближённого решения матричных игр, обосновать их алгоритмы, и, по возможности, реализовать на языке программирования.
Введение 2
Теория игр. 3
КЛАССИФИКАЦИЯ ИГР. 3
ГЛАВА 1. МАТРИЧНЫЕ ИГРЫ. 4
§ 1. РЕШЕНИЕ МАТРИЧНЫХ ИГР В ЧИСТЫХ СТРАТЕГИЯХ. 4
§ 2. СМЕШАННОЕ РАСШИРЕНИЕ МАТРИЧНОЙ ИГРЫ. 7
§ 3. СВОЙСТВА РЕШЕНИЙ МАТРИЧНЫХ ИГР. 8
§ 4. ИГРЫ ПОРЯДКА 2 х 2. 12
§5. СВЕДЕНИЕ МАТРИЧНОЙ ИГРЫ К ЗАДАЧЕ 13
ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ 13
Глава 2. КООПЕРАТИВНЫЕ ИГРЫ 16
§ 1. ПЕРЕЧИСЛЕНИЕ ХАРАКТЕРИСТИЧЕСКИХ ФУНКЦИЙ 20
С МАЛЫМ ЧИСЛОМ ИГРОКОВ. 20
Заключение 33
Список использованной литературы 34
Условие предпочтительности отражает необходимость “единодушия” в предпочтении со стороны коалиции: если хотя бы одно из неравенств xi > yi будет нарушено, т.е. если хотя бы для одного из членов коалиции K выигрыш в условиях дележа y будет не меньшим, чем в условиях дележа x, то можно будет говорить о предпочтении дележа x дележу y не всей коалицией K, а только теми её членами, для которых соответствующее неравенство xi > yi соблюдается.
Соотношение доминирования x над y по коалиции K обозначается через
Определение. Делёж x доминирует y, если существует такая коалиция K, для которой делёж x доминирует y. Это доминирование обозначается так:
x > y.
Наличие доминирования x > y означает, что в множестве игроков N найдётся коалиция, для которой x предпочтительнее y. Отношение доминирования не обладает полностью свойствами рефлексивности, симметрии, транзитивности, возможна только частичная симметрия и транзитивность. Соотношение доминирования возможно не по всякой коалиции. Так, невозможно доминирование по коалиции, состоящей из одного игрока или из всех игроков.
Справедлива следующая теорема.
Теорема. Если u и u1 – две стратегически эквивалентные характеристические функции, причём дележам x и y соответствуют дележи и , то из x > y следует > .
Очевидно, все явления, описываемые в терминах доминирования дележей, относятся к классам стратегической эквивалентности, поэтому достаточно изучать эти классы (а не сами игры) для существенных игр по их (0,1)-редуцированной форме, а для несущественных игр – по нулевым играм.
В любой несущественной игре имеется только один делёж, поэтому никаких доминирований в ней нет.
Рассмотрим
доминирование дележей в
Пример. Пусть имеется (0,1)-редуцированная форма существенной игры трёх игроков с постоянной суммой (равной 1). Поскольку доминирование невозможно ни по одной из одноэлементных коалиций 1,2,3, а также по коалиции, состоящей из всех трёх игроков, то доминирование возможно только по одной из двухэлементных коалиций {1,2}, {1,3}, {2,3}.
Для
наглядности доминирования
В барицентрической системе координат всегда выполняется равенство
x1 + x2 + x3 = 1.
В плоскости всегда имеется точка с координатами x1, x2, x3, удовлетворяющими равенству (6). По этому бароцентрическая система координат автоматически удовлетворяет одному из условий, определяющих исход игры трёх игроков. С другой стороны, поскольку игра в (0, 1)-редуцированной форме, то точка x должна находиться в заштрихованном треугольнике (см. рис. 2). Дележи x1, x2, x3 должны удовлетворять неравенствам
x1 + x2 £ u(1, 2), x1 + x3 £ u(1, 3), x2 + x3 £ u(2, 3).
Очевидно, из условия дополнительности, что
x1 + x2 = 1 - x3 £ 1 = u(1, 2), x1 + x3 £ 1, x2 + x3 £ 1.
Делёж x = (x1, x2, x3) доминирует дележ y = (y1, y2, y3)
по коалиции {1, 2}, если x1 > y1, x2 > y2;
по коалиции {1, 3}, если x1 > y1, x3 > y3;
по коалиции {2, 3}, если x2 > y2, x3 > y3,
т.е. если делёж y находится в одном из заштрихованных параллелограммов (за исключением трёх граничных прямых, проходящих через точку x) на рис. 3, то делёж x доминирует делёж y, а всякая точка находящаяся в не заштрихованных треугольниках, является предпочтительнее исхода x.
x3 = - 1
x2 = - 1
Рис.3
Таким образом, если x и y - два исхода и ни один из них не предпочтительнее другого, то соответствующие точки лежат на прямой, параллельной одной из координатных осей.
Пример. Пусть имеется (0, 1)-редуцированная игра трёх игроков с ненулевой суммой.
Рассмотрим сначала условия доминирования дележа x = (x1, x2, x3) над дележём y = (y1, y2, y3) по коалиции {1, 2}. В этом случае имеем :
Поскольку может быть, что C3 < 1 , то первое из условий (7) нельзя отбросить, как это делает- ся в играх с постоянной суммой. Это значит что, x должна быть не ниже прямой
x1 + x2 = C3.
Или, учитывая (6), последнее уравнение принимает вид
x3 = 1 + C3 .
Таким образом, если делёж x таков, что
x1 ³
1 -
C1, x2 ³
1 -
C2, x3 ³
1 -
C3,
то имеется три параллелограмма, заштрихованных на рис. 4, находясь в которых, точки x доминируют y.
Если
в (8) одно из неравенств, например, третье
не имеет места, то есть только 2 парал-
лелограмма, заштрихованных на рис. 5, находясь
в некоторых точках x доминирует
y.
x1
= 1 -
C
1
x2 = 1 -
C
2
x2 = 1 -
C
2
x1 = 1 -
C
1
Рис. 5
Из рассмотренного примера видно, что возможно много вариантов, которые возникают при изучении вопросов, связанных с доминированием дележей в кооперативных играх. С ростом числа игроков чрезвычайно быстро растёт количество таких вариантов. В связи с этим возникает необходимость выделения вполне устойчивых дележей, т.е. таких дележей, которые не доминируются никакими другими дележами. Множество вполне устойчивых дележей в кооперативной игре называется с-ядром этой игры.
Теорема. Для того чтобы делёж x принадлежал с-ядру кооперативной игры с характеристической функцией u, необходимо и достаточно, чтобы для любой коалиции K выполнялось неравенство
Поскольку неравенства (9) линейны относительно x, то из последней теоремы следует, что с-ядро в любой кооперативной игре является выпуклым многогранником.
К особенностям кооперативных игр относительно существования с-ядра относятся :
1) в несущественной игре с-ядро существует и состоит из единственного дележа этой игры;
2) во
всякой существенной игре с
постоянной суммой с-ядро
Для общей игры трёх игроков в (0; 1)-редуцированной форме имеем следующее (рис. 7).
Её характеристическая функция имеет вид :
u(Æ) = u(1) = u(2) = u(3) = 0;
u(1, 2, 3) = 1,
u(1, 2) = С3; u(1, 3) = С2; u(2, 3) = С1,
где 0 £ С1, С2, С3 £ 1.
На основании последней теоремы для принадлежности дележа x с-ядру необходимо и достаточно выполнение неравенств
x1 + x2 ³ C3, x1 + x3 ³ C2, x2 + x3 ³ C1
или, используя равенство x1 + x2 + x3 = 1, получим
x3 £ 1 - C3, x2 £ 1 - C2, x3 £ 1 - C1.