Шпаргалка по "Математике"

Автор работы: Пользователь скрыл имя, 12 Марта 2012 в 18:54, шпаргалка

Краткое описание

Работа содержит ответы на вопросы для экзамена по " Математике".

Содержимое работы - 1 файл

ЛОГИКА.doc

— 992.02 Кб (Скачать файл)

4-е правило: если одна из посылок — частное суждение, то и заключение должно быть частным.

Если одна посылка общеутвердительная, а другая — частноу-твердительная (AI, IA), то в них распределен только один термин — субъект общеутвердительного суждения.

Согласно 2-му правилу терминов, это должен быть средний тер­мин. Но в таком случае два крайних термина, в том числе меньший, не будут распределены. Поэтому в соответствии с 3 правилом терми­нов меньший термин не будет распределен в заключении, которое будет частным суждением.

Если одна из посылок утвердительная, а другая — отрицатель­ная, причем одна из них частная (EI, АО, ОА), то распределенными окажутся два термина: субъект и предикат общеотрицательного суждения (EI) или субъект общего и предикат частного суждения (АО, ОА). Но в том и другом случае, согласно 2-му правилу посылок, заключение будет отрицательным, т.е. суждением с распределенным предикатом. А так как вторым распределенным термином должен быть средний (2-е правило терминов), то меньший термин в заклю­чении окажется нераспределенным, т.е. заключение будет частным.

 

В-28

§ 5. Сложные и сложносокращенные силлогизмы

В процессе рассуждения простые силлогизмы выступают в логической связи друг с другом, образуя цепь силлогизмов, в которой заключение предшествующего силло­гизма становится посылкой последующего. Предшествующий силлогизм называется просиллогизмом, последующий — эписиллогизмом.

Соединение простых силлогизмов, в котором заключение предшествующего сил­логизма (просиллогизма) становится посылкой последующего силлогизма (эписил-логизма), называется сложным силлогизмом, или полисиллогизмом.

Различают прогрессивный и регрессивный полисиллогизмы.

В прогрессивном полисиллогизме заключение просиллогизма становится боль­шей посылкой эписиллогизма.

В регрессивном полисиллогизме заключение просиллогизма становится меньшей посылкой эписиллогизма.

Сложными могут быть чисто условные силлогизмы, которые имеют схему:

(p-»q)A(q->r)A(r-»s)^...^(r1-»S1)

p->s1

Из схемы видно, что, как и в простом чисто условном умозаключении, заключение представляет собой импликативную связь основания первой посылки со следствием последней.

В процессе рассуждения полисиллогизм принимает обычно сокращенную форму; некоторые из его посылок опускаются. Полисиллогизм, в котором пропущены некоторые посылки, называется соритом. Различают два вида соритов: прогрессивный полисиллогизм с пропущенными бoльшими посылками эписиллогизмов и регрессив­ный полисиллогизм с пропущенными меньшими посылками.

К сложносокращенным силлогизмам относится также эпихейрема. Эпихейремоч называется сложносокращенный силлогизм, обе посылки которого являются знти-мемалш.

Развертывание эпихейремы в полисиллогизм позволяет прове­рить правильность рассуждения, избегать логических ошибок, кото­рые могут остаться незамеченными в эпихейреме.

 

В – 29

 

Сокращенный силлогизм (энтимема)

Силлогизм, в котором выражены все его части — обе посылки и заключение, называется полным. Однако на практике чаще использу­ются силлогизмы, в которых одна из посылок или заключение явно не выражаются, а подразумеваются.

Силлогизм с пропущенной посылкой или заключением называет­ся сокращенным силлогизмом, или энтимемой.

Энтимема в переводе с греческого буквально означает «в уме»/

Широко используются энтимемы простого категорического сил­логизма, особенно выводы по первой фигуре. Например: «Н. совер­шил преступление и поэтому подлежит уголовной ответственности». Здесь пропущена большая посылка: «Лицо, совершившее преступ­ление, подлежит уголовной ответственности». Она представляет собой общеизвестное положение, формулировать которое необяза­тельно.

Полный силлогизм строится по 1-й фигуре:

Лицо, совершившее преступление (М), подлежит уголовной

ответственности (р)

Н. (s) совершил преступление (М)

Н. (s) подлежит уголовной ответственности (р)

В зависимости от того, какая часть силлогизма пропущена, разли­чают три вида энтимемы: с пропущенной большей посылкой, с про­пущенной меньшей посылкой и с пропущенным заключением.

Умозаключение в форме энтимемы может быть построено и по 2-й фигуре; по 3-й фигуре оно строится редко.

Форму энтимемы принимают также умозаключения, посылками которых являются условные и разделительные суждения.

Условно-категорический силлогизм с пропущенной большей по­сылкой: «Уголовное дело не может быть возбуждено, так как собы­тие преступления не имело места».

Здесь пропущена большая посылка — условное суждение «Если событие преступления не имело места, то уголовное дело не может быть возбуждено». Она содержит известное положение Уголовно-процессуального кодекса, которое подразумевается.

Разделительно-категорический силлогизм с опущенной большей посылкой: «По данному делу не может быть вынесен оправдатель­ный приговор, он должен быть обвинительным».

Большая посылка — разделительное суждение «По данному делу может быть вынесен либо оправдательный, либо обвинительный приговор» не формулируется.

Разделительно-категорический силлогизм с опущенным заклю­чением: «Смерть произошла либо в результате убийства, либо в результате самоубийства, либо в результате несчастного случая, либо в силу естественных причин. Смерть произошла в результате несчастного случая».

Заключение, отрицающее все другие альтернативы, обычно не формулируется.

Использование сокращенных силлогизмов обусловлено тем, что пропущенная посылка или заключение либо содержит известное положение, которое не нуждается в устном или письменном выраже­нии, либо в контексте выраженных частей умозаключения она легко подразумевается. Именно поэтому рассуждение протекает, как пра­вило, в форме энтимем. Но, поскольку в энтимеме выражены не все части умозаключения, скрывающуюся в ней ошибку обнаружить труднее, чем в полном умозаключении. Поэтому для проверки пра­вильности рассуждения следует найти пропущенные части умозак­лючения и восстановить энтимему в полный силлогизм.

 

В – 30

 

Чисто условное умозаключение

Чисто условным называется умозаключение, обе посылки кото­рого являются условными суждениями.

Схема чисто условного умозаключения:

(р -» q) ^ (q -> г) р->г

Вывод в чисто условном умозаключении основывается на прави­ле: следствие следствия есть следствие основания.

Умозаключение, в котором заключение получается из двух услов­ных посылок, относится к простым. Однако заключение может сле­довать из большего числа посылок, которые образуют цепь услов­ных суждений. Такие умозаключения называются сложными.

 

В – 31

Условно-категорическое умозаключение

Условно-категорическим называется умозаключение, в кото­ром одна из посылок —условное, а другая посылка и заключение — категорические суждения.

Это умозаключение имеет два правильных модуса: 1) утверждаю­щий и 2) отрицающий.

1. В утверждающем модусе посылка, выражен­ная категорическим суждением, утверждает истинность основания условной посылки, а заключение утверждает истинность следствия;

рассуждение направлено от утверждения истинности основания к утверждению истинности следствия.

2. В отрицающем модусе посылка, выраженная категорическим суждением, отрицает истинность следствия услов­ной посылки, а заключение отрицает истинность основания. Рассуж­дение направлено от отрицания истинности следствия к отрица­нию истинности основания.

Из четырех модусов условно-категорического умозаключе­ния, исчерпывающих все возможные комбинации посылок, досто­верные заключения дают два: утверждающий (modus ponens) (1) и отрицающий (modus tollens) (2). Они выражают законы логики и называются правильными модусами условно-категорического умо­заключения. Эти модусы подчиняются правилу: утверждение осно­вания ведет к утверждению следствия и отрицание следствия — к отрицанию основания. Два других модуса (3 и 4) достоверных заключений не дают. Они называются неправильными модусами и подчиняются правилу: отрицание основания не ведет с необходи­мостью к отрицанию следствия и утверждение следствия не ведет с необходимостью к утверждению основания.

 

В – 32

§ 2. Разделительно-категорическое умозаключение

Разделительно-категорическим называется умозаключение, в котором одна из посылок — разделительное, а другая посылка и заключение — категорические суждения.

Простые суждения, из которых состоит разделительное (ди­зъюнктивное) суждение, называются членами дизъюнкции, или ди­зъюнктами.

1. В утверждающе-отрицающем модусе меньшая посылка — категорическое суждение — утверждает один член дизъюнкции, заключение — также категорическое сужде­ние — отрицает другой ее член.

Заключение по этому модусу всегда достоверно, если соблюдает­ся правило: большая посылка должна быть исключающе-раздели-тельным суждением, или суждением строгой дизъюнкции. Если это правило не соблюдается, достоверного заключения получить нельзя.

2. В отрицающе-утверждающем модусе меньшая посылка отрицает один дизъюнкт, заключение утверждает другой.

Заключение по этому модусу всегда достоверно, если соблюдает­ся правило: в большей посылке должны быть перечислены все воз­можные суждения -— дизъюнкты, иначе говоря, большая посылка должна быть полным (закрытым) дизъюнктивным высказывани­ем. Применяя неполное (открытое) дизъюнктивное высказывание, достоверного заключения получить нельзя.

Однако это заключение может оказаться ложным, так как в боль­шей посылке учтены не все возможные виды сделок: посылка пред­ставляет собой неполное, или открытое, дизъюнктивное высказыва­ние.

Заключение будет истинным, если в условной посылке учтены все возможные случаи.

Разделительно-категорическое умозаключение находит широкое применение в судебно-следственной практике, особенно при по­строении и проверке следственных версий.

 

В – 33

 

§ 3. Условно-разделительное умозаключение

Умозаключение, в котором одна посылка условное, а другая — разделительное суждения, называется условно-разделительным, или лемматическим.

Разделительное суждение может содержать две, три и большее число альтернатив, поэтому лемматические умозаключения делятся на дилеммы (две альтернативы), трилеммы (три альтернативы) и т.д.

Различают два вида дилемм: кон­структивную (созидательную) и деструктивную (разрушительную), каждая из которых делится на простую и сложную.

В простой конструктивной дилемме условная посылка содер­жит два основания, из которых вытекает одно и то же следствие. Разделительная посылка утверждает оба возможных основания, за­ключение утверждает следствие. Рассуждение направлено от ут­верждения истинности оснований к утверждению истинности след­ствия.

Схема простой конструктивной дилеммы:

(р-»г)^(q->г),рvq

В сложной конструктивной дилемме условная посылка содер­жит два основания и два следствия. Разделительная посылка утверж­дает оба возможных следствия. Рассуждение направлено от утверж­дения истинности оснований к утверждению истинности следствий.

Схема сложной конструктивной дилеммы:

(p->q)^(r-»s), pvr

         qvs

В простой деструктивной дилемме условная посылка содержит одно основание, из которого вытекает два возможных следствия. Разделительная посылка отрицает оба следствия, заключение отри­цает основание. Рассуждение направлено от отрицания истинности следствий к отрицанию истинности основания.

Схема простой деструктивной дилеммы:

(p->q)^(p-»r),1qv1r

               1p

В сложной деструктивной дилемме условная посылка содержит два основания и два следствия. Разделительная посылка отрицает оба следствия, заключение отрицает оба основания. Рассуждение направлено от отрицания истинности следствий к отрицанию истин­ности оснований.

Схема сложной деструктивной дилеммы:

(p-»q)^(r->s),1qv1s

          1pv1r

 

 

 

В – 35

 

1. Метод сходства

По методу сходства сравнивают несколько случаев, в каждом из которых исследуемое явление наступает; при этом все случаи сходны лишь в одном и различны во всех других обстоятельствах.

Метод сходства называют методом нахождения общего в различ­ном, поскольку все случаи заметно отличаются друг от друга, кроме одного обстоятельства.

Логический механизм индуктивного вывода по методу сходства предполагает ряд познавательных предпосылок.

(1) Требуется общее знание о возможных причинах исследуемого явления.

(2) Из предшествующих должны быть исключены (элиминирова­ны) все обстоятельства, не являющиеся необходимыми для иссле­дуемого действия и тем самым не удовлетворяющие основному свойству причинной связи

(3) Среди множества предшествующих обстоятельств выделяют сходное и повторяющееся в каждом из рассмотренных случаев

Достоверное заключение может быть получено по методу сходст­ва лишь в том случае, если исследователю точно известны все пред­шествующие обстоятельства, которые составляют закрытое мно­жество возможных причин, а также известно, что каждое из обсто­ятельств не вступает во взаимодействие с другими. В этом случае индуктивное рассуждение приобретает доказательное значение.

2. Метод различия

По методу различия сравнивают два случая, в одном из кото­рых исследуемое явление наступает, а в другом не наступает; при этом второй случай отличается от первого лишь одним обстоя­тельством, а все другие являются сходными.

Метод различия называют методом нахождения различного в сходном, ибо сравниваемые случаи совпадают друг с другом по мно­гим свойствам.

Применяется метод различия как в процессе наблюдения над явлениями в естественных условиях, так и в условиях лабораторного или производственного эксперимента. В истории химии методом различия были открыты многие вещества — ускорители реакций, которые впоследствии получили название катализаторов. В сельско­хозяйственном производстве этим методом проверяют, к примеру, эффективность удобрений.

Рассуждение по методу различия также предполагает ряд предпосылок.

(1)      Требуется общее знание о предшествующих обстоятельст­вах, каждое из которых может быть причиной исследуемого явле­ния.

(2)      Из членов дизъюнкции следует исключить обстоятельства, не удовлетворяющие условию достаточности для исследуемого дей­ствия.

(3)  Среди множества возможных причин остается единственное обстоятельство, которое рассматривается в качестве действитель­ной причины.

Поскольку в условиях эмпирического познания трудно претен­довать на исчерпывающую констатацию всех обстоятельств, выводы по методу различия в большинстве случаев дают лишь проблема­тичные заключения. По признанию многих исследователей, методом различия дости­гаются наиболее правдоподобные индуктивные выводы.

Информация о работе Шпаргалка по "Математике"