Шпаргалка по "Математике"

Автор работы: Пользователь скрыл имя, 12 Марта 2012 в 18:54, шпаргалка

Краткое описание

Работа содержит ответы на вопросы для экзамена по " Математике".

Содержимое работы - 1 файл

ЛОГИКА.doc

— 992.02 Кб (Скачать файл)

 

при истинности антецедента и ложности консеквента (2-я строка) импликация всегда будет ложной. Сочетание истинного антецедента, например «Предохранитель плавит­ся», и ложного консеквента — «Электролампа не гаснет» — являет­ся показателем ложности имплика­ции.

Истинность импликации объяс­няется следующим образом. В 1-й строке истинность р имплицирует

истинность q, или другими словами. если предохранитель плавится, то электролампа обязательно гаснет в силу их последовательного включения в электрическую цепь.

В 3-й строке при ложном антецеденте — «Предохранитель не плавится» консеквент является истинным — «Электролампа гас­нет». Ситуация вполне допустимая, ибо предохранитель может не плавиться, а электролампа может погаснуть в силу других причин — отсутствия тока в цепи, перегорания нити в лампе и т.д. Таким образом, истинность q при ложности р не опровергает идею о наличии условной зависимости между ними, поскольку при истинности р всегда будет истинным и q.

В 4-й строке при ложном антецеденте — «Предохранитель не плавится» ложным является и консеквент — «Электролампа не гас­нет». Такая ситуация возможна, но она не ставит под сомнение факт условной зависимости р и q, ибо при истинности р всегда будет истинным q.

4. Эквивалентные суждения (двойная импликация). Эквивалентным называют суждение, включающее в качестве составных два суждения, связанных двойной (прямой и обратной) условной зависимостью, выражаемой логической связкой «если и только если..., то...».

 

В-20

Сложные суждения

Сложные суждения также могут быть сравнимыми и несравни­мыми.

Несравнимые — это суждения, которые не имеют общих пропо­зициональных переменных. Например, р ^ q и m ^ n.

Сравнимые — это суждения, которые имеют одинаковые пропозиционные переменные (составляющие) и различаются логически­ми связками, включая отрицание.

Сложные сравнимые суждения могут быть совместимыми и не­совместимыми.

Отношение совместимости.

К совместимым относятся такие сравнимые суждения, кото­рые одновременно могут быть истинными. Как и в случае простых суждений, различают три вида совместимости сложных суждений:

эквивалентность, частичная совместимость и подчинение.

1. Эквивалентные — это суждения, которые принимают одни и те значения, т.е. одновременно являются либо истинными, либо ложными.

2. Частичная совместимость характерна для суждений, кото­рые могут быть одновременно истинными, но не могут быть одно­временно ложными.

3. Подчинение между суждениями имеет место в том случае, когда при истинности подчиняющего подчиненное всегда будет истинным.

Отношение несовместимости.

Несовместимыми являются суждения, которые одновременно не могут быть истинными. Из двух видов несовместимости одна — противоположность, другая — противоречие.

Противоположность — отношение между суждениями, кото­рые одновременно не могут быть истинными, но могут быть одно­временно ложными.

2. Противоречие — отношение между суждениями, которые одновременно не могут быть ни истинными, ни ложными. При истинности одного из них другое будет ложным, а при ложности первого второе будет истинным.

В – 21

большую часть знаний мы получаем путем выведения новых знаний из знаний уже имеющихся. Эти знания называются опосредствованными, или выводными.

Логической формой получения выводных знаний является умо­заключение.

Умозаключение — это форма мышления, посредством кото­рой из одного или нескольких суждений выводится новое суждение.

Любое умозаключение состоит из посылок, заключения и вывода. Посылками умозаключения называют исходные суждения, из кото­рых выводится новое суждение. Заключением называется новое суждение, полученное логическим путем из посылок. Логический переход от посылок к заключению называется выводом.

При анализе умозаключения посылки и заключение принято за­писывать отдельно, располагая их друг под другом. Заключение за­писывают под горизонтальной чертой, отделяющей его от посылок и обозначающей логическое следование.

Умозаключения делятся на следующие виды.

1. В зависимости от строгости правил вывода различают демон­стративные (необходимые) и недемонстративные (правдоподоб­ные) умозаключения. Демонстративные умозаключения характери­зуются тем, что заключение в них с необходимостью следует из посылок, т.е. логическое следование в такого рода выводах представ­ляет собой логический закон. В недемонстративных умозаключени­ях правила вывода обеспечивают лишь вероятностное следование заключения из посылок.

2. Важное значение имеет классификация умозаключений по на­правленности логического следования. С этой точки зрения различают три вида умозаключений: дедуктивные (от общего знания к частному), индук­тивные (от частного знания к общему), умозаключения по аналогии (от частного знания к частному).

Дедуктивными называ­ется умозаключение, в котором переход от общего знания к част­ному является логически необходимым.

 

В – 22

 

§ 2. Непосредственные умозаключения

1. Превращение.

Преобразование суждения в суждение, противоположное по ка­честву с предикатом, противоречащим предикату исходного суж­дения, называется превращением.

Превращать можно общеутвердительные, общеотрицательные, частноутвердительные и частноотрицательные суждения.

Общеутвердительное суждение (А) превращается в общеотри­цательное (Е).

Схема превращения суждения А:

Все S суть Р Ни одно S не есть не-Р

Общеотрицательное суждение (Е) превращается в общеутвер­дительное (А).

Схема превращения суждения Е:

Ни одно S не есть Р Все S суть не-Р

Частноутвердительное суждение (I) превращается в частно-отрицательное (О).

Схема превращения суждения I:

Некоторые S суть Р Некоторые S не суть не-Р

Частноотрицательное суждение (О) превращается в частно-утвердительное (I).

Схема превращения суждения О:

Некоторые S не суть Р Некоторые S суть не-Р

Таким образом, чтобы превратить суждение, нужно заменить его связку на противоположную, а предикат — на понятие, противоре­чащее предикату исходного суждения. Суждение, полученное по­средством превращения, сохраняет количество, но изменяет качест­во исходного суждения. Субъект исходного суждения не изменяется.

2. Обращение.

Преобразование суждения, в результате которого субъект ис­ходного суждения становится предикатом, а предикат — субъек­том заключения, называется обращением.

3. Противопоставление предикату.

Преобразование суждения, в результате которого субъектом становится понятие, противоречащее предикату, а предика­том — субъект исходного суждения, называется противопостав­лением предикату.

Значение умозаключений посредством противопоставления пре­дикату состоит в том, что в них выясняется отношение предметов, не входящих в объём предиката, к предметам, отражённым субъектом исходного суждения. Устанавливая отношения между этими предметами, мы уточняем наши знания, высказываем нечто новое, что не было в явной форме выражено в исходном суждении.

 

В – 23

§ 4. Умозаключения из суждений с отношениями

Умозаключение, посылки и заключение которого являются суж­дениями с отношениями, называется умозаключением с отноше­ниями.

Посылки и заключение в приведенном примере — суждения с отношениями, имеющие логическую структуру xRy.

Логическим основанием умозаключений из суждений с отноше­ниями являются свойства отношений, важнейшие из которых — 1) симметричность, 2) рефлексивность и 3) транзитивность.

1.Отношение называется симметричным, если перестанов­ка членов отношения не ведет к изменению вида отношения.  Отношение симметричности символически записывается: xRy -> yRx.

2.Отношение называется рефлексивным, если каждый член отношения находится в таком же отношении к самому себе. Отношение рефлексивности записывается: xRy -> xRx л yRy.

3. Отношение называется транзитивным, тогда и только тогда, когда из отношения между х и у и между у и z следует такое же отношение между х и z. Отношение транзитивности записывается: (xRy л yRz) -> xRz.

Для получения достоверных заключений из суждений с отноше­ниями необходимо опираться на правила, вытекающие из свойств отношений.

Из свойства симметричности (xRy—>yRx) вытекает правило: если суждение xRy истинно, то суждение yRx тоже истинно. Например:

А подобно В

В подобно А

Из свойства рефлексивности (xRy-»xRx ^ yRy) вытекает прави­ло: если суждение xRy истинно, то истинными будут суждения xRx и yRy. Например:

    а=B         

а =а иЬ= b

Из свойства транзитивности (xRy ^ yRz->xRz) вытекает правило:

если суждение xRy истинно и суждение yRz истинно, то суждение xRz также истинно. Например:

К. был на месте происшествия раньше Л.

Л. был на месте происшествия раньше М.

К. был на месте происшествия раньше М.

Таким образом, истинность заключения из суждений с отноше­ниями зависит от свойств отношений и регулируется правилами, вытекающими из этих свойств. В противном случае заключение может оказаться ложным.

 

В-24

 

§3. Простой категорический силлогизм Состав простого категорического силлогизма

Широко распространенным видом опосредствованных умозак­лючений является простой категорический силлогизм, заключение в котором получается из двух категорических суждений. Простой категорический силлогизм состоит из трех категорических суждений, два из которых являются посылками, а третье — заключением.

В отличие от терминов суждения — субъекта (S) и предиката (P) — понятия, входящие в состав силлогизма, называют термина­ми силлогизма. Различают меньший, больший и средний термины.

Меньшим термином силлогизма называется понятие, которое в заключении является субъектом. Большим термином силлогизма называется понятие, ко­торое в заключении является предикатом. Меньший и больший термины называются крайними и обозна­чаются соответственно латинскими буквами S (меньший термин) и Р (больший термин).

Каждый из крайних терминов входит не только в заключение, но и в одну из посылок. Посылка, в которую входит меньший термин, называется меньшей посылкой, посылка, в которую входит больший термин, называется большей посылкой.

Для удобства анализа силлогизма посьшки принято располагать в определенной последовательности: большую — на первом месте, меньшую — на втором. Под чертой записывают заключение:

Обвиняемый имеет право на защиту Гусев — обвиняемый

Гусев имеет право на защиту

Однако в рассуждении такой порядок необязателен. Меньшая посылка может находиться на первом месте, большая — на втором. Иногда посылки стоят после заключения.

Посылки различаются не их местом в силлогизме, а входящими в них терминами.

Вывод в силлогизме был бы невозможен, если бы в нем не было среднего термина. Средним термином силлогизма называется по­нятие, входящее в обе посылки и отсутствующее в заключении. Средний термин обозначается латинской буквой М.

Поставив в нашем примере на место терминов суждения терми­ны силлогизма, получим:

Обвиняемый (М) имеет право на защиту (Р)

Гусев (S) — обвиняемый (М)

Гусев (S) имеет право на защиту (Р)

Итак, простой категорический силлогизм — это умозаключе­ние об отношении двух крайних терминов на основании их отноше­ния к среднему термину.

Правомерность вывода, т.е. логического перехода от посылок к заключению, в категорическом силлогизме основывается на положе­нии (аксиоме силлогизма): все, что утверждается или отрицает­ся относительно всех предметов некоторого класса, утверждает­ся или отрицается относительно каждого предмета и любой части предметов этого класса.

 

В – 25

Общие правила категорического силлогизма

Из истинных посылок не всегда можно получить истинное заклю­чение. Его истинность обусловлена правилами силлогизма. Этих правил семь: три относятся к терминам и четыре — к посылкам.

Правила терминов.

1-е правило: в силлогизме должно быть только три термина. Вывод в силлогизме основан на отношении двух крайних терминов к среднему, поэтому в нем не может быть ни меньше, ни больше трех терминов.

2-е правило: средний термин должен быть распределен хотя бы в одной из посылок. Если средний термин не распределен ни в одной из посылок, то связь между крайними терминами остается неопреде­ленной.

3-е правило: термин, не распределенный в посылке, не может быть распределен и в заключении.

Меньший термин (S) не распределен в посылке (как предикат утвердительного суждения), поэтому он не распределен и в заклю­чении (как субъект частного суждения). Делать вывод с распреде­ленным субъектом в форме общего суждения это прави­ло запрещает. Ошибка, связанная с нарушением правила распреде­ленноcти крайних терминов, называется незаконным расширением меньшего (или большего) термина.

Правила посылок.

1-е правило: хотя бы одна из посылок должна быть утверди­тельным суждением. Из двух отрицательных посылок заключение с необходимостью не следует.

2-е правило: если одна из посылок — отрицательное суждение, то и заключение должно быть отрицательным.

3-е и 4-е правила являются производными, вытекающими из рас­смотренных.

3-е правило: хотя бы одна из посылок должна быть общим суждением. Из двух частных посылок заключение с необходимостью не следует.

Если обе посылки — частноутвердительные суждения (II), то вывод сделать нельзя согласно 2-му правилу терминов: в частно-утвердительном суждении ни субъект, ни предикат не распределе­ны, поэтому и средний термин не распределен ни в одной из посы­лок.

Если обе посылки — частноотрицательные суждения (OO), то вывод сделать нельзя согласно 1-му правилу посылок.

Если одна посылка — частноутвердительная, а другая — частнотрицательная (IO или OI), то в таком силлогизме распределенным будет только один термин — предикат частноотрицательного суж­дения. Если этим термином будет средний, то вывода сделать нельзя, так, согласно 2-му правилу посылок, заключение должно быть отри­цательным. Но в этом случае предикат заключения должен быть распределен, что противоречит 3-му правилу терминов: 1) больший термин, не распределенный в посылке, окажется распределенным в заключении; 2) если же больший термин распределен, то вывода не следует согласно 2-му правилу терминов.

Информация о работе Шпаргалка по "Математике"