Автор работы: Пользователь скрыл имя, 12 Марта 2012 в 18:54, шпаргалка
Работа содержит ответы на вопросы для экзамена по " Математике".
Общеутвердительное суждение — это суждение, общее по количеству и утвердительное по качеству. Общеотрицательное суждение — суждение, общее по количеству и отрицательное по качеству. Частноутвердительное суждение — суждение, частное по количеству и утвердительное по качеству. Частноотрцательное суждение — суждение, частное по количеству и отрицательное по качеству.
В логике принято сокращенное обозначение суждений по их объединенной классификации.
Cуждения обозначаются следующими буквами: А — общеутвердительное, Е — общеотрицательное, I — Частноутвердительное, О — частно-отрицательное.
На языке логики предикатов суждения А, Е, I, О записывают следующим образом:
А (Все S суть Р): V х (S(х) -> Р(х))
читается: для всех х, если х присуще свойство S, то х присуще свойство Р.
Е (Ни одно S не есть Р): V х (S(х) -> -1 Р(х))
читается: ни одному х, которому присуще свойство S, не присуще свойство Р.
I (Некоторые S суть Р): 3 х(S(х) а Р(х))
читается: существуют х, которым присуще свойство S и свойство Р.
О (Некоторые S не суть Р): 3 х(S(х) л -1 Р(х))
читается: существуют х, которым присуще свойство S и не присуще свойство Р.
В – 14
Выделяющие и исключающие суждения
Особое место в классификации суждений занимают 1) выделяющие и 2) исключающие суждения.
Выделяющие суждения они отражают тот факт, что признак, выраженный предикатом, принадлежит (или не принадлежит) только данному, и никакому другому, предмету.
«Некоторые города — столицы государств» — пример частного выделяющего суждения (некоторые 8, и только S, суть Р). Столицами государств могут быть только города, и притом только некоторая их часть. Предикат частного выделяющего суждения полностью входит в объем субъекта.
Частные выделяющие суждения не следует смешивать с определенными частными суждениями. Если в определенном частном суждении уточняется объем субъекта, то в частных выделяющих суждениях уточняется объем предиката.
«Все преступления, и только преступления, — предусмотренные законом общественно опасные деяния» — пример общего выделяющего суждения (Все S, и только S, суть Р). Объемы субъекта и предиката общего выделяющего суждения полностью совпадают.
Слова «только», «лишь», входящие в состав предложений, выражающих выделяющие суждения, могут находиться как перед субъектом, так и перед предикатом. Но они могут и вообще отсутствовать. В этих случаях установить, что данное суждение является выделяющим, помогает логический анализ.
Исключающим называется суждение, в котором отражается принадлежность (или непринадлежность) признака всем предметам, за исключением некоторой их части. Например: «Все студенты нашей группы, кроме Волкова, сдали экзамены». Исключающие суждения выражаются предложениями со словами «кроме», «за исключением», «помимо», «не считая» и т.п. (Все S, за исключением S1, суть Р).
Значение выделяющих и исключающих суждений состоит в том, что положения, выраженные в форме этих суждений, характеризуются точностью и определенностью, что исключает их неоднозначное понимание. Именно поэтому ряд научных положений, а также статей международных документов, законов государства выражен в форме выделяющих или исключающих суждений.
В – 15
Распредеденность терминов в суждениях
В логических операциях с суждениями возникает необходимость установить, распределены или не распределены его термины — субъект и предикат. Термин считается распределенным, если он взят в полном объеме. Термин считается нераспределенным, если он взят в части объема.
Рассмотрим, как распределены термины в суждениях А, Е, I, О.
Суждение А (Все S суть Р). «Все студенты нашей группы (S) сдали экзамены (Р)». Субъект распределен, он взят в полном объеме: речь идет обо всех студентах нашей группы. Предикат этого суждения не распределен, так как в нем мыслится только часть лиц, сдавших экзамены, совпадающая со студентами нашей группы.
Таким образом, в общеутвердительных суждениях S распределен, а Р не распределен. Однако в общеутвердительных суждениях, субъект и предикат которых имеют одинаковый объем, распределен не только субъект, но и предикат. К таким суждениям относятся общевыделяющие суждения, а также определения, подчиняющиеся правилу соразмерности.
Суждение Е (Ни одно S не есть Р). «Ни один студент нашей группы (S) не является неуспевающим (Р)». И субъект, и предикат взяты в полном объеме. Объем одного термина полностью исключается из объема другого: ни один студент нашей группы не входит в число неуспевающих, и ни один неуспевающий не является студентом нашей группы. Следовательно, в общеотрицательных суждениях и S, и Р распределены.
Суждение I (Некоторые S суть Р). «Некоторые студенты нашей группы (S) — отличники (Р)». Субъект этого суждения не распределен, так как в нем мыслится только часть студентов нашей группы, объем субъекта лишь частично включается в объем предиката. Но и объем предиката лишь частично включается в объем субъекта: не все, а только некоторые отличники — студенты нашей группы.
Следовательно, в частноутвердительном суждении ни S, ни Р не распределены.
Суждение О (некоторые S не суть Р). «Некоторые студенты нашей группы (S) — не отличники (Р)». Субъект этого суждения не распределен, предикат распределен, в нем мыслятся все отличники, ни один из которых не включается в ту часть студентов нашей группы, которая мыслится в субъекте. Следовательно, в частноотрицательном суждении S не распределен, а Р распределен.
В-17
§ 4. Логические отношения между суждениями
Несравнимыми среди простых являются суждения, имеющие различные субъекты или предикаты. Таковы, например, два суждения: «Среди космонавтов есть летчики»; «Среди космонавтов есть
женщины».
Сравнимьши являются суждения с одинаковыми субъектами и предикатами и различающиеся связкой или квантором. Обычно их называют суждениями одинаковой материи. Например: «Все американские индейцы живут в резервациях»; «Некоторые американские индейцы не живут в резервациях».
Отношения между простыми суждениями обычно рассматриваются с помощью мнемонической схемы, называемой логическим квадратом. Его вершины символизируют простые категорические суждения — А, Е, I, О; стороны и диагонали — отношения между суждениями.
Противоположность (контрарность) Частичная совместимость (субконтрарность)
|
Противоречие (контрадикторность) |
Среди сравнимых различают совместимые и несовместимые суждения.
К совместимым относятся суждения, которые одновременно могут быть истинными. Различают три вида совместимости: 1) эквивалентность (полная совместимость), 2) частичная совместимость (субконтрарность) и 3) подчинение.
1. Эквивалентными являются такие суждения, которые имеют одинаковые логические характеристики: одинаковые субъекты и предикаты, однотипную — утвердительную или отрицательную — связку, одну и ту же выраженную квантором количественную характеристику. С помощью логического квадрата отношения между простыми эквивалентными суждениями не иллюстрируются.
2. Частичная совместимость характерна для суждений I u О, которые могут быть одновременно истинными, но не могут быть одновременно ложными.
3. Подчинение имеет место между суждениями А и I, Е и О. Для них характерны следующие две зависимости.
При истинности общего суждения частное всегда будет истинным
При ложности частного суждения общее суждение также будет ложным
Отношение несовместимости.
Несовместимыми являются суждения А и Е, А и О, Е и I, которые одновременно не могут быть истинными. Различают два вида несовместимости: противоположность и противоречие.
1. Противоположными (контрарными) являются суждения А и Е, которые одновременно не могут быть истинными, но могут быть одновременно ложными.
2. Противоречащими (контрадикторными) являются суждения А и О, Е и I, которые одновременно не могут быть ни истинными, ни ложными.
Hесовместимые единичные суждения могут находиться лишь в отношении противоречия и не могут находиться в отношении противоположности, ибо каждому отдельному предмету может быть либо присущ, либо не присущ определенный признак.
В – 18
§3. Сложные суждения
1. Соединительные (конъюнктивные) суждения.
Соединительным, или конъюнктивным называю суждение, состоящее из нескольких простых, связанных логической связкой «и».
Соединительное суждение может быть как двух-, так и многосоставным; в символической записи: р ^ q ^ г ^... ^ n.
В языке соединительное суждение может быть выражено одной из трех логико-грамматических структур.
1. Соединительная связка представлена в сложном субъекте по схеме: S1 и S2 есть Р. Например: «Конфискация имущества и лишение звания являются дополнительными уголовно-правовыми санкциями».
2) Связка представлена в сложном предикате по схеме: S есть P1 и P2. Например: «Преступление — это общественно опасное и противоправное деяние».
3) Связка представлена сочетанием первых двух способов по схеме: S1 и S2 есть P1 и Р2. Например: «С полицмейстером и прокурором Ноздрев тоже был на «ты» и обращался по-дружески» (Н.В. Гоголь).
р | q | р^ q |
и | И | И |
и | Л | л |
л | И | л |
л | Л | л |
Соединительное суждение истинно при истинности всех составляющих его конъюнктов и ложно при ложности хотя бы одного из них. Условия истинности суждения р ^ q показаны в таблице (рис. 31), где истинность обозначена И, а ложность — Л. В первых двух столбцах таблицы р и q берутся как независимые и принимают поэтому все возможные сочетания значений И и Л: ИИ, ИЛ, ЛИ, ЛЛ. В третьем столбце показано значение суждение р л q. Из четырех построчных вариантов истинным оно является лишь в 1-й строке, когда истинны оба конъюнкта: и р, и q. Во всех остальных случаях оно ложно: во 2-й и 3-й строках в силу ложности одного из членов, а в 4-й в силу ложности обоих членов.
В – 19
Условные (импликативные) суждения.
Условным, или импликативным, называют суждение, состоящее из двух простых, связанных логической связкой «если.., то...». Например: «Если предохранитель плавится, то электролампа гаснет». Первое суждение — «Предохранитель плавится» называют антецедентом, второе — «Электролампа гаснет» — консеквентом (последующим). Если антецедент обозначить р, консеквент — q, а связку «если..., то...» знаком «—>», то имплика-тивное суждение символически можно выразить как p—>q.
Условия истинности импликативного суждения показаны в таблице. Импликация истинна во всех случаях, кроме одного:
Р | q | p-»q |
и | И | И |
и | Л | Л |
л | И | И |
л | Л | И |