Автор работы: Пользователь скрыл имя, 14 Января 2012 в 14:37, курсовая работа
Обозначим x1,x2,x3,x4 - число единиц 1-й,2-й,3-й,4-й продукции, которые планируем произвести. При этом можно использовать только имеющиеся запасы ресурсов. Целью является получение максимальной прибыли. Получаем следующую математическую модель оптимального планирования:
СОДЕРЖАНИЕ. 2
1. ОПТИМАЛЬНОЕ ПРОИЗВОДСТВЕННОЕ ПЛАНИРОВАНИЕ. 3
1.1 ЛИНЕЙНАЯ ЗАДАЧА ПРОИЗВОДСТВЕННОГО ПЛАНИРОВАНИЯ. 3
1.2 ДВОЙСТВЕННАЯ ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ. 4
1.3 ЗАДАЧА О КОМПЛЕКТНОМ ПЛАНЕ. 5
1.4 ОПТИМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ ИНВЕСТИЦИЙ. 6
2. АНАЛИЗ ФИНАНСОВЫХ ОПЕРАЦИЙ И ИНСТРУМЕНТОВ. 9
2.1 ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ. 9
2.2 АНАЛИЗ ДОХОДНОСТИ И РИСКОВАННОСТИ ФИНАНСОВЫХ ОПЕРАЦИЙ. 11
2.3 СТАТИСТИЧЕСКИЙ АНАЛИЗ ДЕНЕЖНЫХ ПОТОКОВ. 13
2.4 ЗАДАЧА ФОРМИРОВАНИЯ ОПТИМАЛЬНОГО ПОРТФЕЛЯ ЦЕННЫХ БУМАГ. 17
3. МОДЕЛИ СОТРУДНИЧЕСТВА И КОНКУРЕНЦИИ. 19
3.1 СОТРУДНИЧЕСТВО И КОНКУРЕНЦИЯ ДВУХ ФИРМ НА РЫНКЕ ОДНОГО ТОВАРА. 19
3.2 КООПЕРАТИВНАЯ БИМАТРИЧНАЯ ИГРА КАК МОДЕЛЬ СОТРУДНИЧЕСТВА И КОНКУРЕНЦИИ ДВУХ УЧАСТНИКОВ. 20
3.3 МАТРИЧНАЯ ИГРА КАК МОДЕЛЬ КОНКУРЕНЦИИ И СОТРУДНИЧЕСТВА. 22
4. СОЦИАЛЬНО-ЭКОНОМИЧЕСКАЯ СТРУКТУРА ОБЩЕСТВА. 24
4.1 МОДЕЛЬ РАСПРЕДЕЛЕНИЯ БОГАТСТВА В ОБЩЕСТВЕ. 24
4.2 РАСПРЕДЕЛЕНИЕ ОБЩЕСТВА ПО ПОЛУЧАЕМОМУ ДОХОДУ. 26
Операции:
1-я – (4;2), 2-я – (2;4), 3-я – (2;4), 4-я
– (0;6).
Красным цветом высвечены доминируемые точки (операции), а зеленым – недоминируемые, т.е. оптимальные по Парето. Оптимальной по Парето является 4-я операция.
Была
проведена пробная операция, которая
значительно сместила распределение
вероятностей.
|
Где p*[j] – вероятности после проведения пробной операции. М*(Q[i]), М*(R[i]) – средний ожидаемый доход и риск после проведения пробной операции.
Максимально оправданная стоимость пробной операции равна М*(Q[i]) - М(Q[i])=11 – 6 = 5.
Теперь выберем какие-нибудь две операции (1-ю и 4-ю), предположим, что они независимы друг от друга и найдем операцию, являющуюся их линейной комбинацией и более хорошую, чем какая-либо из имеющихся.
1-я операция = (4,2); 4-я операция = (0,6)
Результат: нельзя подобрать такой операции, являющейся линейной комбинацией 1-ой и 4-ой операции, которая бы доминировала все имеющиеся операции.
Пусть
взвешивающая формула f(Q)=М[Q]/M[R], при
M[R] не равным нулю, тогда для 1- 4 операций
f1=0,5; f2=2; f3=2; f4= ¥.
Следовательно 4-я операция является самой
лучшей (max=¥), а 1-я – самая худшая.
Пусть
доход от операции Q есть с.в.,
которую будем обозначать также
как и саму операцию Q. Математическое
ожидание M[Q]=S(q[i]*p[i]) называют еще
средним ожидаемым доходом, а риск операции
r = s
=ÖD[Q]=Ö(M[Q2]-M2[Q])
отождествляют со средним квадратическим
отклонением.
номер операции | Доходы (Q) и их вероятности (Р) | M[Q] | r | |||
1 | 0 | 1 | 5 | 14 | 4,2 | 5,19 |
1/5 | 2/5 | 1/5 | 1/5 | |||
2 | 2 | 4 | 6 | 18 | 6,8 | 5,74 |
1/5 | 2/5 | 1/5 | 1/5 | |||
3 | 0 | 8 | 16 | 20 | 8 | 8,72 |
1/2 | 1/8 | 1/8 | 1/4 | |||
4 | 2 | 12 | 18 | 22 | 16,25 | 6,12 |
1/8 | 1/8 | 1/2 | 1/4 |
Необходимые
расчеты:
Красным цветом высвечены доминируемые точки (операции), а зеленым – недоминируемые, т.е. оптимальные по Парето. Оптимальными по Парето являются 1-я,2-я и 4-я операции.
Теперь выберем две операции (1-ю: Q1 и 4-ю: Q4), предположим, что они независимы друг от друга и выясним, нет ли операции, являющейся их линейной комбинацией и более хорошей, чем какая-либо из имеющихся.
Пусть
Q1 и Q4 две финансовые операции
со средним ожидаемым доходом 4,2 и 16,25 и
рисками 5,19 и 6,12 соответственно. Пусть
t - какое-нибудь число между 0 и 1
. Тогда операция Qt=(1-t)Q1+tQ4
называется линейной комбинацией операций
Q1,Q4. Средний ожидаемый доход
операции Qt равен M[Qt] = 4,2* (1-t) + 16,25*t,
а риск операции Qt равен rt =Ö(26,94*(1-t)2+37,44*t2).
Была найдена операция Q*, являющаяся линейной
комбинацией исходных операций, со средним
ожидаемым доходом 9,14 и риском 3,96, которая
превосходит все имеющиеся операции по
риску.
Определить
лучшую и худшую операции можно также
с помощью взвешивающей формулы
f(Q)= 2*M[Q] – r. Имеем: f(Q1)=3,21; f(Q2)=7,86;
f(Q3)=7,28; f(Q4)=26,38. Следовательно,
4-я операция является самой лучшей, а 1-я
– самой худшей.
Исходные
данные для анализа: ежедневные (суммарные)
денежные вклады населения в отделение
сбербанка в течение 4-х недель
(или аналогичный какой-нибудь денежный
поток).
Исходные данные:
1-я неделя | 2-я неделя | 3-я неделя | 4-я неделя | ||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 |
6 | 5 | 13 | 15 | 14 | 13 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 3 | 1 | 17 | 19 | 5 | 4 |
Денежный поток:
6 | 5 | 13 | 15 | 14 | 13 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 3 | 1 | 17 | 19 | 5 | 4 |
Ранжированный ряд:
1 | 3 | 4 | 5 | 5 | 6 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 13 | 13 | 14 | 15 | 17 | 19 |
Дискретный вариационный ряд:
значения | 1 | 3 | 4 | 5 | 6 | 9 | 12 | 13 | 14 | 15 | 17 | 19 |
частоты | 1 | 1 | 1 | 2 | 1 | 6 | 6 | 2 | 1 | 1 | 1 | 1 |
частости | 1/24 | 1/24 | 1/24 | 2/24 | 1/24 | 6/24 | 6/24 | 2/24 | 1/24 | 1/24 | 1/24 | 1/24 |
Многоугольник
частот:
Интервальный
вариационный ряд:
Границы интервалов | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | |||||||||||||||||
Середины интервалов | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | ||||||||||||||||||
Частоты | 1 | 1 | 3 | 1 | 6 | 0 | 8 | 2 | 1 | 1 | ||||||||||||||||||
Частости | 1/24 | 1/24 | 3/24 | 1/24 | 6/24 | 1/24 | 8/24 | 2/24 | 1/24 | 1/24 |
Многоугольник
частостей:
Выборочная
функция распределения:
Статистические характеристики:
По исходному ряду | По дискретному ряду | По интервальному ряду | |
Выборочная средняя | 10,4 | 10,4 | 10,42 |
Выборочная дисперсия | 18,79 | 18,79 | 19,88 |
Выборочное СКО | 4,33 | 4,33 | 4,46 |
Несмещенная оценка ген. диспер. | 19,61 | 19,61 | 20,75 |