Автор работы: Пользователь скрыл имя, 02 Ноября 2011 в 05:59, реферат
Экспериментальные исследования являются основным источником получения достоверных сведений об объектах реального мира. Такие исследования проводятся с целью выбора рациональных технологических режимов функционирования или оптимизации параметров систем, оценки степени выполнения заданных требований к создаваемым изделиям, выяснения закономерностей функционирования, анализа влияния факторов на показатели качества систем и т.д. Натурные исследования свойств технических средств или сложных моделей требуют значительных затрат ресурсов. Данное обстоятельство заставляет уделять серьезное внимание рациональной организации экспериментального изучения таких объектов
Часть 1
Введение 2
Общие положения теории планирования эксперимента 3
Общие понятия. 3
Критерии оптимальности и типы планов 10
Планы для решения задач оптимизации 12
Постановка задачи оптимизации 12
Полный факторный эксперимент типа 2k 14
Дробный факторный эксперимент 16
Планы для решения задач оптимизации 17
Композиционные планы 17
Ротатабельные центральные композиционные планы 18
Оценка адекватности 19
Планирование экспериментов STATISTICA Design of Experiments 20
Анализ экспериментов: общие свойства 21
Анализ остатков и преобразования 21
Оптимизация одномерных или многомерных переменных отклика: профили отклика(желательности) 22
Планы с минимальной аберрацией и максимально несмешанные.2**(k-p) дробные факторные планы с блоками 22
Отсеивающие планы 23
Отсеивающие планы 23
Смешанные факторные планы 23
Трехуровневые 3**(k-p) дробные факторные планы с блоками
и планы Бокса-Бенкен 23
Центральные композиционные планы (поверхности отклика) 24
D- и A-оптимальные планы 25
Планы для смесей и поверхностей с ограничениями 25
Планирование эксперимента для задач физико-математического характера 26
Пример планирования экспериментов, применяемых в менеджменте качесвта производства 27
Заключение. 32
Список литературы. 34
Строки матрицы соответствуют опытам, столбцы – факторам, элемент матрицы viz задает значение z-го фактора в i-м опыте.
Вектор y называется откликом. В ТПЭ обычно изучается ситуация, в которой вектор отклика y состоит из одного элемента y. При наличии нескольких составляющих вектора y, каждую из них можно исследовать отдельно. Зависимость отклика от факторов носит название функции отклика, а геометрическое представление функции отклика – поверхности отклика. Функция отклика рассматривается как показатель качества или эффективности объекта. Этот показатель является функцией от параметров – факторов. На практике широкое распространение получили простые функции вида М{y'} = bf(v), где b=(b0, b1, …, bh) – вектор неизвестных параметров модели размерности h+1, f(v)=(f0(v), f1(v), …, fh(v)) – вектор заданных базисных функций, М{y'} – математическое ожидание функции отклика. Такое представление функции отклика соответствует линейной по параметрам модели регрессионного анализа, т.е. функция отклика есть линейная комбинация базисных функций от факторов.
Вследствие влияния на
Если не принимать специальных мер, то оценки коэффициентов β станут взаимозависимыми, и полученное выражение для функции отклика можно рассматривать только как интерполяционную формулу, что затрудняет ее физическую интерпретацию и последующие расчеты. Однако, формируя специальным образом матрицу плана, можно получить независимые значения β. И эти величины будут характеризовать вклад каждого фактора в значение функции отклика.
Итак,
задача заключается в определении
общей формы записи функции отклика
y'. В большинстве случаев вид
этой функции, получаемый из теоретических
соображений, является сложным для практического
применения, а при неполном знании объекта
вообще неизвестен. По данным причинам
функцию целесообразно представить в
универсальном, удобном для практического
применения виде, чему соответствует представление
в виде полинома. Тогда системой базисных
функций является совокупность степенных
функций с целыми неотрицательными значениями
показателей степени. Полиномиальная
форма представления функции отклика
примет вид
y' = b0 + b1x1 + …+ bkxk + b12x1x2 + b13x1x3+… +bk–1,k xk–1xk + +b11x21 + … +bkkx2k + … + e, | ((1.3) |
где e – случайная составляющая функции отклика (величина, характеризующая ошибку опыта).
Такая
функция отклика линейна
Иногда функцию отклика целесообразно представить в другом виде, например, в виде степенной функции, так как достижение заданной точности требует применения полинома высокого порядка. Однако использование функций, нелинейных относительно неизвестных параметров, усложняет вычисления, затрудняет оценку их свойств. В некоторых случаях задачу можно упростить путем искусственного преобразования нелинейной функции в линейную. При этом требуется соответствующее преобразование и результатов экспериментов.
Применение ТПЭ основано на ряде допущений, а именно:
функция
отклика содержит в своем составе
неслучайную и случайную
факторы v1, v2, …, vk измеряются с пренебрежимо малой ошибкой по сравнению с ошибкой в определении величины y (учет помех в задании факторов приводит к трудно разрешимым проблемам в оценке коэффициентов функции отклика). Ошибка в определении значения функции отклика объясняется не столько погрешностью измерений, сколько влиянием на результат работы системы неучтенных или случайных факторов, например различиями в формируемой последовательности случайных чисел при статистическом моделировании;
дисперсии среднего значения функции отклика в различных точках равны друг другу (выборочные оценки дисперсии однородны). Это означает, что при многократных повторных наблюдениях над величиной yu при некотором наборе значений v1u, v2u, …, vku, получаемая оценка дисперсии среднего значения не будет отличаться от оценки дисперсии, полученной при многократных наблюдениях для любого другого набора значений независимых переменных v1s, v2s, …, vks.
Указанные
допущения позволяют
В
настоящее время используется свыше
20 различных критериев
Критерии
первой группы представляют интерес
для задач оптимизации, выделения
доминирующих (наиболее значимых) параметров
на начальных этапах решения оптимизационных
задач или для выявления
Критерию D-оптимальности соответствует минимальный объем эллипсоида рассеяния ошибок (минимум произведения всех дисперсий коэффициентов полинома). В соответствующем плане эффекты факторов максимально независимы друг от друга. Этот план минимизируют ожидаемую ошибку предсказания функции отклика. Критерию A-оптимальности соответствует план с минимальной суммарной дисперсией всех коэффициентов. Критерию E-оптимальности – план, в котором максимальная дисперсия коэффициентов будет минимальна.
Выбор критерия зависит от задачи исследования, так при изучении влияния отдельных факторов на поведение объекта применяют критерий Е-оптимальности, а при поиске оптимума функции отклика – D-оптимальности. Если построение D-оптимального плана вызывает затруднения, то можно перейти к А-оптимальному плану, построение которого осуществляется проще.
Критерии второй группы используются при решении задач описания поверхности отклика, определения ограничений на значения параметров. Основным здесь является критерий G-оптимальности, который позволяет построить план с минимальным значением наибольшей ошибки в описании функции отклика. Применение G-оптимального плана дает уверенность в том, что в области планирования нет точек с чрезмерно большой ошибкой описания функции.
Среди всех классов планов основное внимание в практической работе уделяется ортогональным и ротатабельным планам.
Ортогональным называется план, для которого выполняется условие парной ортогональности столбцов матрицы планирования, в частности, для независимых переменных , где N – количество точек плана эксперимента, k – количество независимых факторов. При ортогональном планировании коэффициенты полинома определяются независимо друг от друга – вычеркивание или добавление слагаемых в функции отклика не изменяет значения остальных коэффициентов полинома. Для ортогональных планов эллипсоид рассеяния ориентирован в пространстве так, что направления его осей совпадают с направлениями координат пространства параметров.
Использование ротатабельных планов обеспечивает для любого направления от центра эксперимента равнозначность точности оценки функции отклика (постоянство дисперсии предсказания) на равных расстояниях от центра эксперимента. Это особенно важно при решении задач поиска оптимальных значений параметров на основе градиентного метода, так как исследователь до начала экспериментов не знает направление градиента и поэтому стремится принять план, точность которого одинакова во всех направлениях. В ряде случаев при исследовании поверхности отклика требуется униморфность модели, а именно, соблюдение постоянства значений дисперсии ошибки в некоторой области вокруг центра эксперимента. Выполнение такого требования целесообразно в тех случаях, когда исследователь не знает точно расположение области поверхности отклика с оптимальными значениями параметров. Указанная область будет определена на основе упрощенной модели, полученной по результатам экспериментов.
По
соотношению между количеством
оцениваемых неизвестных
Для некоторых планов важную роль играет свойство композиционности. Так, композиционные планы для построения полиномов второго порядка получают добавлением некоторых точек к планам формирования линейных функций. Это дает возможность в задачах исследования сначала попытаться построить линейную модель, а затем при необходимости, добавив наблюдения, перейти к моделям второго порядка, используя ранее полученные результаты и сохраняя при этом некоторое заданное свойство плана, например его ортогональность.