Автор работы: Пользователь скрыл имя, 24 Октября 2011 в 23:03, курс лекций
Начертательной геометрией называют науку, которая является теоретическим фундаментом черчения. В данной науке изучаются способы изображения на плоскости различных тел и их элементов. Эти изображения позволяют однозначно определить форму и размеры изделия и изготовить его. При работе с чертежами выполняются два вида работ: подготовка чертежей и их чтение.
Чтение чертежа заключается в воспроизведении в уме реальной формы объекта и некоторых его частей с использованием при этом чертежа.
Начертательная геометрия основывается на методе проекций.
ИНЖЕНЕРНАЯ ГРАФИКА
Прямой круговой цилиндр имеет образующие, направленные перпендикулярно горизонтальной плоскости (рис. 61). По этой причине вне зависимости от выбора точки N на его поверхности горизонтальная проекция n этой точки находится на основании цилиндра.
Основание цилиндра составляет линию пересечения боковой поверхности цилиндра с горизонтальной плоскостью, т. е. это горизонтальный след поверхности цилиндра. Следовательно, боковая поверхность прямого кругового цилиндра, который стоит на горизонтальной плоскости, рассматривается как горизонтально-проецирующая поверхность по отношению к любой линии, начерченной на его поверхности.
На рисунке 63 показаны проекции цилиндра.
Фронтальная проекция а́а́1, которая образует АА1, ограничивает слева фронтальную проекцию цилиндра, т. е. является ее контурной образующей. На профильной плоскости ее проекция а˝а˝1располагается на оси симметрии этой проекции. Профильная проекция d˝d˝1образующей DD1 является контурной, а ее фронтальная проекция d́d́1 находится на оси симметрии и т. д.
Если мы посмотрим на цилиндр сверху (рис. 63), увидим только его верхнее основание.
Рассмотрим горизонтальную проекцию. Если провести фронтальную плоскость Р, разделяющую цилиндр на две равные части, можно заметить, что все точки, лежащие на передней половине цилиндра, будут видны при рассмотрении цилиндра спереди, т. е. на фронтальной проекции. Боковая поверхность цилиндра, которая расположена ниже следа Ph, видима на фронтальной проекции, а остальная его часть невидима, т. е. образующая CC1 на фронтальной проекции невидима.
Для выделения невидимых элементов на профильной проекции, необходимо обратиться к горизонтальной проекции. След Qh профильной плоскости разделяет горизонтальную проекцию на две части. Боковая поверхность, которая расположена слева от Qh, видима на профильной проекции и т. д. Таким образом образующая BB1 невидима на профильной проекции.
На рисунке 64 показан прямой круговой конус, который стоит на горизонтальной плоскости.
Основание конуса
и линия пересечения
Рассмотрим на рисунке 65 и все проекции четырех образующих, ограничивающих какой-либо из контуров проекций.
Проекция áś образующей AS ограничивает контур на фронтальной проекции, а ее профильная проекция a˝s˝ лежит на оси симметрии проекции (на образующей AS находится произвольная точка) и т. д.
При рассмотрении конуса сверху все точки боковой поверхности видимы (рис. 65).
Для отыскания невидимых элементов на фронтальной проекции проведем на горизонтальной проекции след Ph той плоскости, которая разделяет конус на две части (видимую и невидимую), если смотреть на конус спереди, т. е. образующая SD в этом случае невидима.
Аналогично можно убедиться, что образующая SB невидима на профильной проекции.
3. Шар, тор и кольцо
Когда некоторая ось вращения I является диаметром окружности, то получается шаровая поверхность (рис. 66).
Если положение оси другое, в плоскости окружности получается поверхность, называемая тором (рис. 67).
Когда ось вращения не пересекает окружность (рис. 68), то полученную в этом случае поверхность обычно называются кольцом (или кольцевой поверхностью).
Рассмотрим эти поверхности отдельно.
Для того чтобы построить контур проекции шара, необходимо провести все проецирующие лучи, которые касаются ее поверхности (рис. 69). Эти лучи образуют цилиндр, касающийся шара по большому кругу, плоскость которого Q перпендикулярна проецирующим лучам.
В случае, если плоскость проекции перпендикулярна лучам проекции, проекцией шара будет окружность, которая равна большому кругу шара. В других случаях проекция будет иметь форму эллипса.
Итак, прямоугольная проекция шара – круг, косоугольная проекция – эллипс.
Следовательно, проекции контура шара на горизонтальных, фронтальных и профильных плоскостях всегда являются окружностью.
Шаровую поверхность можно получить вращением окружности около ее диаметра. Пусть ось вращения I является перпендикулярной горизонтальной плоскости и становится одним из диаметров окружности. Окружность будет вращаться около оси I и описывать шаровую поверхность (рис. 66). Точки, которые лежат на этой исходной окружности (А, В, С и D), при вращении ее вокруг оси I также опишут окружности, называемые параллелями. Параллели изображаются без искажения на горизонтальной плоскости, а на фронтальной плоскости – в виде отрезков, равных диаметрам (рис. 70).
Самая большая параллель равна большому кругу шара. Она называется его экватором. Проекции экватора показаны на рисунке 70 штриховой линией.
Разные положения вращающейся вокруг оси I окружности выступают как так называемые меридианы шара. Их изображают на горизонтальной плоскости в форме диаметров окружности, которые представляют собой контуры проекции шара. На фронтальной плоскости все меридианы, кроме двух, изображаются в виде эллипсов. Меридиан, находящийся во фронтальной плоскости, будет изображаться в виде контура на этой проекции и в виде вертикального диаметра на остальных проекциях. Подобным образом изображается меридиан, который расположен в профильной плоскости.
Точки пересечения поверхности шара с осью вращения (Е и F, рис. 65) принято называть полюсами.
Любое из сечений шара плоскостью будет являться окружностью. Она проецируется на данную плоскость проекций без искажения только тогда, когда секущая плоскость параллельна рассматриваемой плоскости горизонтальной проекции. На рисунке 71 показана фронтальная плоскость. Окружность, по которой эта плоскость пересекает поверхность шара, проецируется на фронтальную плоскость без искажения. На горизонтальной и профильной плоскостях эта окружность проектируется в форме отрезков, которые совпадают со следами Ph и Pw и двумя точками контуров горизонтальной и профильной проекций шара, заключенных между ними. Длины отрезков равны диаметру полученной окружности.
На рисунке 70 показаны семь горизонтальных плоскостей, которые пересекают шар по горизонтально расположенным окружностям. Данные окружности проецируются на горизонтальную плоскость в полную величину, а на фронтальную плоскость – в виде отрезков. Одна плоскость проходит через центр шара и делит его на две равные части. Верхняя половина шара является видимой при наблюдении сверху, а точки, находящиеся на нижней, невидимы.
Также проведены
шесть окружностей, представляющих
собой различные положения
Тор – это поверхность, получаемая в результате вращения окружности около оси, которая лежит в ее плоскости, не проходящей через ее центр.
На рисунке 67 показаны окружность и ось вращения I, пересекающая окружность в двух точках (F и Е).
Если вращать большую часть FABCE окружности, то получается тор, показанный на рисунке 67.
Если вращать меньшую дугу РВЕ окружности, то получается поверхность тора, которая напоминает по форме лимон (рис. 72).
Дуга полуокружности ABC (рис. 74) образует при вращении ту часть поверхности тора, которую принято называть наружной, а две небольшие дуги AF и СЕ – внутренней его поверхность.
Точка В при вращении описывает самую большую окружность (ее можно назвать экватором тора). Эта окружность отделяет видимую часть поверхности тора от невидимой, если смотреть на тор сверху. Дуги окружности BAF или BF (рис. 75) описывают при вращении видимые части поверхности, а дуги ВСЕ или BE – невидимые.
При наблюдении тора спереди вся его внутренняя поверхность будет невидимой. Если провести фронтальную плоскость через ось вращения I, то эта плоскость разделит наружную поверхность тора на переднюю видимую и заднюю невидимую.
Рассмотрим образования кольца. В этом случае ось вращения I, несмотря на то что лежит в плоскости исходной окружности, ее не пересекает (рис. 73). Любая горизонтальная плоскость, перпендикулярная оси вращения, даст в сечении две окружности. На рисунке 74 проведена плоскость R, пересекающая кольцевую поверхность по двум окружностям (с радиусаи R и r), т. е. по двум параллелям.
Лекция № 7. Расположение проекций в черчении
1. Линии, применяемые в черчении
В черчении применяют три основных типа линий (сплошные, штриховые и штрихпунктирные) различной толщины (рис. 76).
На рисунке 75 толщина каждой линии в милиметрах указана цифрами.
Рассмотрим более подробно каждый из типов линий и их основное применение.
1. Сплошная контурная линия считается основной линией чертежа. Ее толщина выбирается в зависимости от размеров чертежа, его сложности и назначения. Толщина контурной линии обозначается буквой b и может принимать значения от 0,4 до 1,5 мм (рис. 77).
Толщина других линий чертежа определяется толщиной линии видимого контура. На одном и том же чертеже все одноименные линии должны быть одной и той же толщины.
2. Штриховую линию невидимого контура применяют для проведения очертаний внутренних плоскостей и линий, скрытых от наблюдателя, а также для изображения резьбы и окружности впадин зубчатых колес (рис. 78).
Линия невидимого контура по толщине должна быть в два-три раза меньше толщины линии видимого контура. Длина штрихов – в четыре раза больше расстояния между штрихами. Чаще всего длина штрихов равна 4–6 мм, а расстояние между штрихами 1,1–1,5 мм. Обычно длина штрихов уменьшается с толщиной линий. На мелких чертежах длина штриха может быть уменьшена до 2 мм.
3. Линии излома, обрыва или выреза разделяются на три основных вида (рис. 79):
1) волнистая линия обрыва является линией той же толщины, что и линия невидимого контура. Ее проводят от руки;
2) штрихпунктирная линия обладает той же толщиной, что и волнистая. Длина штрихов примерно 10,1-12 мм, а расстояние между штрихами – 3 мм. На небольших чертежах длина штрихов может быть меньше;
3) линию излома можно проводить также в виде тонкой линии с прямолинейными зигзагами. Такие линии применяют при построении длинных линий излома.
4. Тонкая сплошная линия. Ее толщина в четыре раза меньше толщины линии контура, и она применяется часто. Ею выполняют выносные и размерные линии, проводят штриховку и всевозможные вспомогательные линии, необходимые в процессе какого-нибудь построения или поясняющие его (рис. 80).
5. Осевые и центровые линии (рис. 81). Они являются тонкими штрихпунктирными линиями со сравнительно длинными штрихами. Длина штрихов примерно 20–25 мм. Расстояние между штрихами примерно 3 мм. На малых чертежах длина штрихов может быть меньше. Такая штрихпунктирная линия применяется для проведения и начальной окружности, и образующих начального цилиндра и начального конуса, и у зубчатых колес.
6. Штрихпунктирную линию с двумя точками (рис. 82) применяют для очертаний габарита, контуров механизма в его крайнем или промежуточном положении и контура пограничной детали, имеющей вспомогательное значение. Эти линии имеют такую же толщину и длину штрихов, как и обычные штрихпунктирные линии, применяемые в качестве осевых и центровых.
Информация о работе И. С. Козлова, Ю. В. Щербакова Начертательная геометрия. Конспект лекций