Автор работы: Пользователь скрыл имя, 18 Марта 2012 в 09:22, курсовая работа
Научная дисциплина, изучающая потребительные стоимости товаров, называется товароведением. Перед товароведением стоит задача изучения товаров как предметов потребления, т. е. их полезных свойств, природы и состава, значения для человека, различных приемов их использования, режимов и способов хранения, методов контроля качества, упаковки и транспортирования. Кроме того, задачей товароведения является изучение особенностей технологии производства товаров для выяснения причин, обусловливающих их качество и различия между отдельными сортами, а также изменений, происходящих в товаре в процессе его движения от производства к потребителю.
Введение
Химический состав
Химический состав и пищевая ценность
Изменения химического состава и влияние на качество
Заключение
Список используемой литературы
Целлюлоза (клетчатка) благотворно влияет на развитие полезной микрофлоры кишечника, способствует выделению холестерина из организма. Человеку требуется около 25 г. клетчатками в сутки. Неодревесневевшая клетчатка, содержащая в листьях капусты и некоторых овощей, растворяется пищеварительных соками, а одревесневавшая (пропитанная минеральными солями, лигнином, кутином), содержащая, например, в оболочках зерна, кожуре картофеля, не усваивается организмом.
Пектин --растворимое вещество клеточного сока плодов и некоторых овощей в виде коллоидного раствора; в присутствии достаточного количества сахара (65%) и кислоты пектин образует прочное желе. Плоды содержащие пектин (яблоки, абрикосы, ренклоды), используются для выработки мармелада, желе, пастилы.
Липиды (от греческого липос -- жир) -- производные жирных кислот. Они делятся на простые (жиры, воска) и сложные (фосфатиды, гликолипиды). Значение липидов в питании определяется их высокой энергетической способностью и биологической активностью.
Липиды содержатся в каждой клетке организма, где участвуют в обмене веществ и синтезе белков, расходуются для построения мембран клеток и жировой ткани. Биологическая, ценность липидов определяется содержанием в них фосфатидов стеринов, витаминов, полиненасыщенных жирных кислот -- линолевой, линоленовой и арахидоновой, способствующих выведению холестерина из организма, повышению эластичности стенок кровеносных сосудов, снижению их проницаемости и имеющих важное значение в профилактике атеросклероза. В сутки человеку требуется (в г): фосфатидов -- 5, холестерина - 0,3--0,6, полиненасыщенных жирных кислот--3-6; жиров - 80--100 (в том числе растительных - 20-30)
Жиры
Жир является важным источником
энергии: при окислении 1 г жира в
организме выделяется 38,9 кДж, или 9,3
ккал, тепла; кроме того, жир служит
носителем жирорастворимых
По химической природе жиры представляют собой смесь триглицеридов (сложные эфиры трехатомного, спирта глицерина) жирных кислот. На долю жирных кислот, обусловливающих различия в физических и химических свойствах жиров, приходится 90% молекулы триглицерида. В большинстве жиров растений и наземных животных содержится пять-восемь жирных кислот, в жирах морских животных и рыб -- несколько десятков, а в некоторых жирах растительного происхождения находится преимущественно одна кислота: в оливковом масле -- олеиновая, в касторовом --рицинолевая.
Жирные кислоты, входящие в состав жиров, содержат четное число углеродных атомов и являются одноосновными. В зависимости от длины радикала (числа углеводородных групп в углеводородной цепи) жирные кислоты подразделяются на низкомолекулярные (с числом атомов углерода до 9) и высокомолекулярные, а в зависимости от характера связи атомов углерода в углеводородной цепи -- на предельные (все атомы углерода соединяются одинарными связями) и непредельные (имеют двойные связи).
Химические свойства жирных кислот определяются гидроксильными группами в карбоксиле молекулы, наличием двойных связей и оксигрупп в радикале жирной кислоты.
По месту двойных связей к жирным кислотам могут присоединяться водород, кислород, галогены и другие вещества, существенно изменяя свойства кислот. Так, в результате реакции восстановления, т. е. присоединения, по месту двойных связей водорода, кислоты превращаются в, более насыщенные или даже предельные -- этот процесс называется гидрогенизацией. При увеличении в молекуле жирной кислоты числа двойных связей в 2--3 раза скорость реакции присоединения возрастает в десятки раз. Наличием двойных связей в радикале непредельных жирных кислот обусловлено снижение температуры плавления в несколько раз по сравнению с предельными кислотами, имеющими равнозначное число атомов углерода.
В природных жирах жирные кислоты чаще всего встречаются в цис-форме, поэтому они обладают большей растворимостью в инертных растворителях, более низкой температурой плавления и меньшей стойкостью к окислению, чем соответствующие транс-формы. Молекула жирной кислоты с двумя и более двойными связями может быть одновременно в цис и транс-формах. В процессе гидрогенизации в натуральных жирах, кроме цис-формы, может образоваться значительное количество транс-изомеров.
Жирнокислотный состав жиров и процессы, происходящие в них при хранении и переработке, характеризуются следующими показателями: кислотным числом, числом омыления, йодным числом.
Кислотное число, определяемое количеством миллиграммов КОН, необходимым для нейтрализации свободных жирных кислот в одном грамме жира, являются важным показателем свежести жира. При длительном хранении жиров в неблагоприятных условиях оно возрастает в несколько раз. Свободные жирные кислоты в жирах образуется в результате окислительных превращений или гидролитического распада глицеридов.
Число омыления измеряются
количеством миллиграммов КОН, необходимым
для нейтрализации свободных
и связных глицерином жирных кислот,
получающих при омылении одного грамма
жира. Оно зависит от среднего молекулярного
веса входящих в жир кислот и является
относительным показателем
Йодное число (коэффициент непредельности) определяется количеством граммов йода, которое требуется для полного насыщения 100 граммов жира. Величина этого числа зависит от природы жира: для говяжьего --32-47, для свиного -- 46--66; для бараньего --31--46, для подсолнечного масла - 114-119.
Химически чистые жиры, как правило, не имеют запаха и вкуса. При комнатной, температуре твердые жиры белового цвета, а жидкие --бесцветные и прозрачные. В природных жирах животного растительного происхождения имеются сопутствующие вещества: вкусовые и ароматические, красящие, белковые, липоиды, влага, витамины, ферменты, воска и др. Белый цвет имеют жиры бараний, свиной и кокосовое масло. Желтоватый цвет натуральных растительных жиров говяжьего жира и коровьего масла обусловлен наличием в них каротина и карротиноидов, а зеленые оттенки оливкового и конопляного масел - хлорофиллом.
Вкус и запах природных
жиров и масел зависят от присутствия
в них специфических для
Жирорастворимые витамины А и Д содержатся главным образом в молочных и печеночных жирах, витамин Е - в растительных маслах, витамин К - в конопляном масле.
В виде коллоидных растворов и в виде молекулярных соединений с фосфатидами в жирах находятся белки и углеводы как остатки тканей, из которых добывались жиры. Из неомыляемых щелочами веществ в жирах содержатся стерины, а также высокомолекулярные ненасыщенные углеводороды, которых мало в растительных маслах и больше в жирах рыб и морских животных.
Из ферментов в жирах и маслах имеется липаза, а в растительных маслах, кроме того, липоксидаза.
В процессе получения жиров, а также при неблагоприятных условиях их хранения в них накапливаются свободные жирные кислоты вследствие распада как самих жиров, так и сопутствующих веществ. При этом образуются гидроперекиси, перекиси, альдегиды, кетоны, полимеры и другие вещества, незначительные количества которых существенно изменяют вкус и запах природных жиров, снижают их пищевую ценность.
Физические свойства жиров неодинаковы. В зависимости от жирнокислотного состава, жиры при комнатной температуре могут иметь жидкую, мазеобразную или твёрдую консистенцию. Температура застывания подсолнечного масла от - 16 до - 18?С, оливкового-- от -- 2 до--4°С;. хлопкового -- от - 1 до - 6 ? С. Твердые жиры представляют, собой сложную смесь различных триглицеридов, поэтому они не обладают точно выраженной точкой управления, а переход их в жидкое состояние совершается в определенном температурном интервале. Температурой плавления жира считают температуру его полного осветления. Температура застывания жира на несколько градусов ниже температуры плавления. Это свойство жиров имеет важное значение в кулинарии: жир горячего блюда в расплавленном виде усваивается организмом человека легче, чем в застывшем состоянии.
При комнатной температуре жиры нелетучи, так как имеют высокий молекулярный вес (860-950), но в вакууме ( при остаточном давлении меньше 10-3 мм рт. ст.) они кипят и разделяются. на фракции, посредством молекулярной дисциплины. При обычном атмосферном давлении нагревание жиров 200?С не приводит к истинному кипению, при 240-250?С начинается химическое разложение жиров с образованием летучих веществ в виде дыма, газов, паров; выделяющий при разложении жиров глицерин превращается в непредельный альдегид акролеин, обладающий едким запахом, раздражающий слизистые оболочки, носами и горла, вызывающий слезотечение.
Температура дымообразования зависит от вила и химического состава жира: коровьего масла -208°С, комбижиров-- 210°С; свиного жира--221° С; гидрожира--230°С; хлопкового жира--233°С. Чем больше в жирах содержится свободных жирных кислот, тем ниже температура дымообразования.
При смешивании жидких жиров с большим количеством воды незначительная часть их переходит в раствор, основная же масса жира образует неустойчивую быстрорасслаивающуюся водную эмульсию. Для получения прочных прямых эмульсий (масло/вода) и обратных (вода/масло) необходимо вводить эмульгаторы. Растворимость воды в жире при 100°С не выше 1%.
Химические свойства жиров проявляются в реакциях гидролиза, окисления и гидрогенизации. Ускорение или замедление этих реакций обусловлено влиянием находящихся в природных жирах сопутствующих веществ, которые иногда оказывают специфическое воздействие на характер происходящего процесса и сами претерпевают различные превращения.
Гидролиз жиров, т.е. расщепление триглицерида на глицерин и жирные кислоты, легко протекает под действием воды и высокой температуры, щелочей, кислот и ферментов.
Реакция гидролиза, триглицеридов происходит чаще всего бимолекулярно, т.е. на одну молекулу триглицерида действует одна молекула воды, при этом образуется диглицерид, который затем расщепляется до моноглицерида, а в дальнейшем образуются глицерин и жирные кислоты. Нагрев до 200?С и повышение давления, присутствие катализаторов (СаО, МgО, Zn) и небольших количеств кислот, а также наличие щелочей ускоряют гидролиз (кислоты катализируют гидролиз водородными, а щелочи--гидроксильными ионами).
Неферментативный гидролиз протекает за счет растворенной в жире воды, т. е. происходит в жировой фазе, где растворенная вода вступает в реакцию. Ничтожно малая растворимость воды в жирах при комнатной температуре обеспечивает незначительную степень гидролиза жиров и масел. Сопутствующие вещества в жирах ускоряют их гидролиз как специфичностью воздействия, так и большей способностью связывать влагу. Высокие температуры катализируют гидролиз за счет тепловой активации, а также повышения, растворимости воды в жире. При кулинарной обработке в частности при длительном кипячении, триглицерида могут гидролизоваться; получающиеся жирные кислоты образуют эмульсию, что придает бульонам мутность. Чтобы бульон не приобретал неприятного вкуса и запаха, необходимо своевременно удалять с его поверхности жир.
Ферментативный гидролиз жиров происходит под действием ферментов во время хранения или при усвоении их организмом. Такой гидролиз протекает исключительно на поверхности соприкосновения жира и воды, поэтому чем выше степень дисперсности эмульсии, тем выше скорость гидролиза. Усвояемость жира, таким образом, зависит не только от температуры плавления (чем ближе температура плавления жира к температуре организма человека, тем выше его усвояемость), но и от степени дисперсности жировой эмульсии, молока, сливок, сметаны, мороженого, коровьего масла, кисломолочных продуктов, маргарина находится в виде хорошо диспергированной эмульсии, поэтому сравнительно хорошо и легко усваивается. Для повышения усвояемости жиров в кулинарии приготовляют жировые эмульсии --соусы майонез и голландский, заправки и др.
Окисление жиров -- процесс химического взаимодействия кислорода и остатков непредельных жирных кислот. Процесс окисления является одним из основных факторов снижения пищевой ценности жиров. Окисление действии атмосферного кислорода называется: автоокисление.
Первая стадия автоокисления -- индукционный период, когда окислительные превращения в жирах практически не обнаруживаются. Длительность индукционного периода жиров обусловливается их жирнокислотным составом, составом и свойствами сопутствующих веществ, способами их выделения и условиями хранения. Устойчивость различных жиров и масел к окислению характеризуется сравнительной длительностью их индукционных периодов.
На второй стадии автоокисления происходят реакции, ведущие к образованию перекисных соединений.
На третьей стадии протекают
вторичные реакции перекисных соединений,
в частности окислительный
Липиды
К липоидам, встречающимся в тканях в свободном состоянии и в виде липопротеидов, относят фосфатиды, стерины, цереброзиды и воска.
Фосфатиды -- сложные эфиры глицерина с жирными кислотами и фосфорной кислотой, которая, в свою очередь, соединена с азотистым основанием. К фосфатидам относят лецитин, кефалин, серинфосфатиды, ацетальфосфатиды, инозит-фосфатиды и сфингомиелины.
Наиболее изученные и часто встречающиеся фосфатиды - лецитин, кефалин, серинфосфатиды - в больших количествах входят в состав нервной ткани и внутриклеточных структур.
Лецитин -- бесцветное вещество, быстро окисляющееся на воздухе, хорошо растворимое в этиловом спирте и других органических растворителях, кроме ацетона с водой образует стойкую эмульсию. Благодаря холину, связанному с фосфорной кислотой, лецитин обладает щелочными свойствами. Содержание лецитина в растительных организмах -- 0,05 - 1,5%, в яичном желтке-- 9--10%, в молочном жире - 1,2 - 1,4%, в мозговом веществе-- до 6%. Лецитин играет важную роль в процессе переноса жира из одной ткани в другую.