Автор работы: Пользователь скрыл имя, 12 Марта 2012 в 14:08, реферат
Биомембрана - это не просто некая пассивная структура, ограничивающая водные компартменты. Уже краткое знакомство с типами ферментов, связанных с мембранами, показывает, насколько разнообразны ассоциированные с мембранами каталитические активности.
Трансмембранные ферменты, катализирующие сопряженные реакции на противопо
Различные цитохромы Р450 в микросомах
печени окисляются целым рядом эндогенных
липофильных субстратов, а также
чужеродных молекул. Если исходить из
первичной структуры изоформ
цитохромов Р450, то эти белки должны
иметь множество
Внутренняя мембрана митохондрий
является местом, где осуществляется
окислительное
Концентрация компонентов
В литературе обсуждаются модели электронного транспорта с участием таких переходных долгоживущих белковых агрегатов, однако имеющиеся кинетические данные можно объяснить, не предполагая образование таких суперкомплексов. Цитохром с выполняет функцию челнока, быстро переносящего электроны между комплексами III и IV, аналогично адренодоксину в содержащей цитохром Р450 системе митохондрий. При физиологической ионной силе цитохром с может диффундировать не только вдоль поверхности бислоя, но и в объеме раствора, что увеличивает его способность к быстрому переносу электронов. Данная система обладает рядом особенностей, не характерных для описанных выше примеров электронтранспортных цепей.
Основные компоненты дыхательной цепи организованы в не-диссоциирующие комплексы. Например, комплекс III состоит из нескольких субъединиц и содержит три гема и один железосерный центр. Перенос электронов между простетическими группами внутри каждого из компонентов происходит быстро и не требует их случайных столкновений.
Жирорастворимые переносчики водорода
служат для переноса восстановительных
эквивалентов не только между ферментами,
но и с одной стороны бислоя
на другую. Показано, что убихинон обладает
способностью к быстрой латеральной
диффузии в плоскости мембраны, хотя
вопрос о величине коэффициента диффузии
не решен. В модельных системах убихинон
также может переносить восстановительные
эквиваленты через бислой. Убихинон
при перемещениях не выходит из мембраны,
однако в ходе редокспревращений
он может захватывать или
Протоны, перенесенные через мембрану
при работе дыхатель- ной цепи, возвращаются
обратно с помощью АТР-синтазы,
замыкая тем самым протонный
цикл. Механизм, по которому протоны
переносятся от компонентов
Таким образом, данная электронтранспортная система представляет собой совокупность небольшого числа высокоорганизованных комплексов, связанных между собой низкомолекулярными подвижными переносчиками, как липофильными, так и водорастворимыми. Кинетику переноса электронов можно объяснить в рамках модели свободно диффундирующих форм, которые могут перемещаться вдоль мембраны на расстояние более 100 А.
К фотосинтетической
В отличие от дыхательной цепи основные мембранные комплексы представлены в фотосинтетической системе примерно в эквимо-лярном соотношении. Однако какие-либо серьезные указания в литературе на формирование суперкомплексов отсутствуют. Напротив, для данной системы характерна поразительная латеральная гетерогенность, в результате которой фотосистема II оказывается локализованной в гранальных, плотно упакованных участках, а фотосистема I и сопрягающий фактор - в стромальных участках тилакоида. Пластохинон и комплекс, по-видимому, распределены между этими участками равномерно. Вследствие такого латерального разделения для сопряжения двух фотосистем необходима диффузия на расстояние по крайней мере 1000 А. Скорее всего основным переносчиком восстановительных эквивалентов на такие расстояния является пластохинон, хотя скорость его латериальной диффузии точно не известна. В оптимальных условиях лимитирующей стадией, вероятно, является окисление пластохинона £б/-комплексом, однако связано ли это со скоростью его латеральной диффузии или с работой самого фермента - неясно.
Латеральное разделение компонентов цепи в тилакоидах явно не способствует ускорению переноса электронов между ферментами. Возможно, оно необходимо для эффективного перераспределения световой энергии между двумя фотосистемами. Фосфорилирование белка светособирающего комплекса II приводит к его перераспределению между гранальными и стромальными участками мембраны, облегчая его взаимодействие с фотосистемой I в стромальных участках, что в свою очередь увеличивает долю энергии возбуждения, поступающей на реакционные центры фотосистемы I.
Биомембраны играют важную роль в
функционировании целого ряда растворимых
ферментов. После разрушения клетки
многие ферменты можно обнаружить и
в растворимой, и в мембранной
фракциях. Отнесение некоего фермента
к классу периферических мембранных
белков зависит от силы его взаимодействия
с мембраной и способа
Во всех этих случаях мембрана выполняет следующие функции:
1) определяет локализацию или компартментацию фермента или группы ферментов;
2) осуществляет аллостерическую
активацию или инактивацию
3) создает среду, в которой
липофильные субстраты могут
быть превращены в
Пока эта важная группа насчитывает небольшое число ферментов, но, по-видимому, в недалеком будущем их список увеличится. Наиболее характерный пример - протеинкиназа С, хотя и другие представители этой группы неплохо охарактеризованы.
Это ключевой фермент системы передачи
сигнала, запускаемого быстрым расщеплением
фосфатидилинозитолов в плазматической
мембране. Такие внеклеточные вещества,
как нейромедиаторы, гормоны или
факторы роста, связываются со специфическими
рецепторами на поверхности клетки.
Это приводит к активации фосфолипазы
С, которая начинает гидролизовать
фосфатидилинозитолы с
До активации клетки какими-либо экзогенными агентами протеинкиназа С остается неактивной и обнаруживается только в цитозоле. Однако после стимуляции клетки фермент быстро активируется и оказывается в мембранных фракциях. Исследования in vitro показали, что для связывания с мембраной и активации необходимы кислые фосфолипиды, а также Са2 + и диацилглицерол. Специфичность к фосфолипиду, необходимому для активации, до некоторой степени зависит от природы субстрата. Для активации фосфотрансферазной активности фермента можно добавить прямо к клеткам проникающие через мембрану коротко цепочечные диацилглицеролы, например диоктаноилглицерол. Природные вторые посредники, длинноцепочечные диацилглицеролы, нерастворимы в воде и остаются в мембране. Аналогичное действие оказывают, по-видимому, промоторы опухолевого роста форболовые эфиры: как показано, они способны связываться с ферментом и вызывать те же изменения, что и эндогенный сигнал. После связывания форболовых эфиров или диацилглицеролов возрастает сродство фермента к Са2+ и фосфатидилсерину. Показано, что эффективным конкурентным ингибитором фермента является сфингозин.