Автор работы: Пользователь скрыл имя, 11 Апреля 2011 в 08:06, реферат
Ингибирующие свойства комплексов d-элементов в водных растворах за последние десятилетия привлекли внимание многих исследователей. Промышленная доступность таких комплексонов, относительно малая токсичность в сочетании с высокой реакционной способностью обусловили повышенный интерес к ним как к перспективным ингибиторам коррозии черных и цветных металлов.
Глава 1. Ингибиторы коррозии на основе комплексов переходных металлов и азотсодержащих алифатических и ароматических соединений (обзор литературы)
1.1. Ингибиторы коррозии для водных сред, содержащих кислород
1.2. Ингибиторы на основе азотсодержащих алифатических и ароматических соединений
1.3. Ингибиторы сероводородной коррозии
1.4. Ингибиторы углекислотной коррозии
1.5. Ингибиторы коррозии в нейтральных средах
Список использованной литературы
Биядерные
комплексы с ОКАДФ могут
Комплекс ОКАДФ-Mn ( lgKy, Mn2 + L = 9,56 ) менее устойчив, чем ОКАДФ-Fe2, а устойчивости комплексов ОКАДФ-Cd ( lgKy, Cd2 + L = 11,45 ) и ОКАДФ-Со ( lgKy, Co2 + L = 11,8 ) соизмеримы с устойчивостью ОКАДФ-Fe2. Однако в случае коррозии Ст 3 концентрация катионов железа в приэлектродном слое выше, чем концентрации Cd 2+ или Co 2+, в результате чего появляется возможность протекания в нем реакции (1).
Касаясь ингибирующих свойств комплексов, включающих ОКАДФ, следует добавить, что комплексы типа ОКАДФ-Cu должны иметь сравнительно низкую защитную эффективность, так как невысокому значению произведения растворимости гидроксида меди ( рПРCu(OH)2 = 19,66 ) можно противопоставить очень высокую устойчивость ее комплексов с ОКАДФ ( lgKy для ОКАДФCu равен 11,51, а для ОКАДФCu2 - 18,70 ).
На основе приведенных данных [9] отмечают, что комплекс ОКАДФ-Со обладает наибольшей эффективностью не только среди других комплексов ОКАДФ с металлами, но и по сравнению с комплексами, содержащими ОЭДФ и НТФ. Однако с точки зрения практического использования более перспективными комплексами являются ОКАДФ-Mg и ОКАДФ-Ca как наименее экологически опасные.
Авторами [10]
исследована зависимость адсорбционной
способности дипиридильных и фенантролиновых
комплексов, включающих переходые металлы,
от pH и природы ионов. Установлено, что
ингибирующая способность комплексов
увеличивается в ряду ионов переходных
металлов: Mn 2+ < Fe 2+ < Co 2+ < Ni 2+
При описании механизма защитного действия ингибиторов часто характеризуют те или иные особенности его влияния на коррозию [11 - 15]. Эти особенности выражаются в катодном, анодном, смешанном, адсорбционно-экранирующем или энергетическом механизме действия [16 - 24].
Роль комплексообразования в ингибировании коррозии металлов различными лигандами и комплексными соединениями изучена в работе [25]. Рассмотрено три случая: а) лиганды и образуемые ими комплексы с переходными металлами хорошо растворимы; б) лиганды обладают ограниченной растворимостью, а комплексы труднорастворимы; в) ингибирование осуществляется растворимыми комплексами лигандов и металлов. Предложены возможные в данных случаях механизмы ингибирования. Отмечены преимущества ингибиторов на основе комплексов лигандов с металлами (в частности, показана высокая ингибирующая способность оксиэтилендиофосфоната цинка).
В работе [26] методом профильной спектроскопии исследованы защитные пленки, образующиеся на стали AlSl 1018 в охлаждающей воде (ионный состав, мг/л: Ca 2+ - 450, Mg 2+ - 300, Cl - - 300, SO42- - 1000; pH 7,0 - 8,5) в присутствии следующих ингибирующих соединений и композиций: 1) хромат; 2) хромат в присутствии ионов Zn 2+; 3) цинкофосфонатная композиция; 4) ортофосфат-полифосфат; 5) молибдат; 6) нитрит. Установлено, что в присутствии хромата, молибдата, нитрита и фосфата в охлаждающей воде образуются пленки более сложного состава, чем в дистиллированной. При этом сохраняется механизм формирования пленки из γ-Fe2O2 на анодных участках поверхности. Однако в пленках обнаруживаются также соединения Ca, S и C, предположительно существующие на катодных участках поверхности в виде CaCO3, CaSO4 и Са(ОН)2. При введении цинкофосфонатной композиции в охлаждающую воду образуется двухслойная пленка, оба слоя которой состоят из оксидов железа с примесями соединений Са, Р и С. Внешний слой содержит Zn(OH)2, а внутренний не содержит соединений Zn.
В [27] отмечается, что ингибиторы коррозии и образования отложений, применяемые обычно в водных охлаждающих системах, эффективны при значениях pH < 8, что требует подкисления водной среды, которое зачастую опасно как с экологической, так и с эксплуатационной точек зрения. Аналогичные требования предъявляются в случае биоцидной обработки коррозионных сред хлором. Приведены результаты эксплуатационных исследований коррозии и отложений при обработке воды неорганическими фосфатами, молибдатами и фосфорорганическими соединениями. Показано, что последние наиболее эффективны как ингибиторы и могут быть использованы при pH до 9,3.
Исследована [28] коррозионная стойкость образцов из низкоуглеродистой стали в неингибированных и ингибированных водных растворах, содержащих соли LiBr и LiCl в различном соотношении, при температурах до 140 °С. Скорость коррозии металла определяли гравиметрическим и потенциостатическим методами. Установлено, что скорость коррозии образцов в неингибированных растворах солей лития можно достаточно точно измерить, зная величины поляризационного сопротивления электродного процесса. При этом скорость коррозии металла постоянна. Введение в растворы ингибитора Li2MoO4 постепенно приводит к смещению потенциала коррозии в сторону положительных значений, в связи с чем оценить скорость коррозии на значительном временном интервале весьма затруднительно. Коррозионное растрескивание стали практически не зависит от наличия LiCl в растворе. Потенциал коррозии стали при температуре раствора 140 °С смещается в сторону положительных значений, что указывает на изменение структуры поверхности при данной температуре.
В [29] электрохимическими методами изучено влияние, оказываемое девяноста пятью различными соединениями, способными к образованию устойчивых комплексов с ионами Mg 2+, на коррозию магния в 0,1 н NaCl. Показано, что скорость коррозии, определенная электрохимическими методами с использованием вращающегося дискового электрода, примерно на два порядка ниже величины, полученной путем измерения концентрации ионов Mg 2+ в коррозионной среде методами аналитической химии.
Влияние модифицирования соединениями Ni, Co, Mo защитных присадок хемосорбционного (типа алкенилсукцинимида) и адсорбционного (типа моноэфира) действия на их ингибирующую способность исследовано в работе [30]. Отмечается, что модифицирование молекул защитных присадок ионами переходных металлов целесообразно в первом случае, так как их введение усиливает хемосорбционную связь в системе «металл – ингибитор». Во втором случае у защитных присадок типа моноэфиров ухудшаются гидрофобные свойства.
Авторами [31] методами гравиметрии и электрохимии изучена ингибирующая эффективность композиции, содержащей нитриты, молибдаты, гексаметафосфаты и ортофосфаты. Установлено, что наибольшую степень защиты эта композиция имеет при следующем соотношении компонентов (в порядке упоминания): 3 : 2 : 1 : 1. По механизму действия композиция относится к ингибиторам анодного типа.
Систематизации ингибирующих композиций на основе молибдатов посвящена работа [32]. Эти композиции могут включать нитриты, фосфаты, бораты, силикаты, бензоаты, фосфонаты, фосфинополикарбоксилаты, полиакриаты и другие соединения, что обеспечивает проявление синергетического эффекта, усиливающего их защитные свойства. Молибдаты и композиции на их основе применяют для защиты от коррозии Fe, Al, Cu, Zn и их сплавов в охлаждающих и гидравлических жидкостях, водных и парогенерирующих системах, маслах, красителях.
Гравиметрическим и электрохимическим методами изучено [33] влияние фосфорорганических комплексонов (ФОК) и их комплексов с ионами Fe 2+ (ФОК-Fe) на коррозию сталей 10 и Ст 3 в 3%-ном растворе NaCl при pH 5; 7; 9 и 11 и температурах 20, 40, 60 и 80 °С. Установлено, что в присутствии комплекса ФОК-Fe скорость коррозии стали на 10-15% ниже, чем в растворах, содержащих комплексон ФОК. Оптимальная концентрация ингибиторов в среде в отсутствие перемешивания 0,15%, значения степеней защиты комплекса ФОК-Fe при 20 и 80 °С составляют 84 и 88% соответственно (pH 7). При перемешивании раствора оптимальная концентрация комплекса увеличивается. По мнению авторов, комплекс ФОК-Fe способен образовывать поверхностные соединения, которые в стационарных условиях образуют достаточно прочные пленки, эффективно защищающие стали от коррозии в водно-солевых растворах.
Коррозия железа в водных средах в присутствии ионов Al 3+ исследована в [34]. С целью подавления гидролиза ионов Al 3+ до AlOH 2+, сопровождающегося подкислением раствора и снижением эффективности ингибирования, в него добавляли оксолат и малонат натрия, которые являются комплексообразователями. Определены константы диссоциации малоновой и щавелевой кислот и константы комплексообразования Al с малонат- и оксолат- ионами. При введении комплексообразователей в раствор коррозия стали снижается более чем на порядок. Так, в случае малонат-иона степень защиты комплекса достигает 97%.
Цинковая соль нитрилтриметилфосфоновой кислоты (НТФЦ) широко применяется в качестве ингибитора коррозии и отложений, однако при повышеных температурах ее эффективная концентрация весьма высока. В [35] приведены результаты электрохимических исследований коррозии углеродистой стали Ст 3 в присутствии НТФЦ с добавкой сульфита натрия. Показано, что повышение эффективности защиты наблюдается лишь в определенном интервале концентраций Na2SO4 и ингибитора.
Авторами [36] электрохимическими методами исследована коррозия железа в пересыщенных растворах солей кальция в присутствии комплексонов (07 ДФ, НТР, ДПФ, Zn-ОЭДЦ, ИОМС-1, дифанол, фосфанол). Установлено, что данные комплексоны являются ингибиторами катодного действия, причем наиболее эффективен Zn-ОЭДЦ. Ингибирующее действие комплексонов зависит от анионного состава воды.
Изучена [37] коррозия и электрохимическое поведение стали Ст 3 и железа Армко в нейтральных водных средах, содержащих ОЭДФ, ее комплексы с солями металлов (КОЭДФ), а также добавки окислителей, при 20 - 80 °С и скорости потока 0,8 м/с. Показано, что ОЭДФ ингибирует общую коррозию стали в воде, но не предотвращает питтингообразования. При использовании КОЭДФ (в частности фосфата цинка) удается полностью подавить коррозию стали. Формирующаяся на ее поверхности пленка состоит из трудно растворимых комплексов и гидроксидов типа Me(OH)2. Совместное использование ОЭДФ или КОЭДФ с окислителями, которые либо восстанавливаются со скоростями большими, чем скорость восстановления кислорода, либо генерируют значительное количество OH --ионов на единицу переносимого заряда, приводит к проявлению синергетического эффекта, усиливающего степень защиты ингибиторов.
Комплексы на основе соединений молибдена и ароматических и алифатических аминов описаны в [38]. Установлено, что комплексы L2Mo3O10⋅nH2O, H6Mo3O12⋅2L' и H4Mo3O11⋅2L', где L - алифатические или ароматические амины, n = 1 - 3; L' - гидразиды бензойной кислоты, являются эффективными ингибиторами коррозии стали. Так, степень защиты стали 40Х комплексом L2Mo3O10⋅nH2O при концентрации в коррозионной среде 1 - 2⋅10 -3 моль/л составляет 95 - 99%. Данный комплекс является также ингибитором малоцикловой коррозионной усталости стали 40Хб, условный предел которой в 3%-ном растворе NaCl при концентрации комплекса 5⋅10 -3 моль/л повышается в 2,5 раза. Комплекс H6Mo3O12⋅2L' проявляет себя как эффективный ингибитор биоповреждений, снижая скорость биологической коррозии стали в 14 - 15 раз при концентрации в среде 0,1 - 0,15%. Это позволяет применять его в качестве модификатора лакокрасочных материалов для судостроения, а также термостойкой ингибирующей добавки в случае эксплуатации оборудования при повышеных температурах. Изученные комплексы отличаются экологической чистотой и оказывают бактериостатическое действие на промышленные системы.
Исследовано [39] коррозионное и электрохимическое поведение стали Ст 3 в нейтральных сульфатно-хлоридных растворах, имитирующих охлаждающую воду оборотного водоснабжения и сточные воды гальванического производства. Испытания проводили в растворах с общей концентрацией анионов 10 ммоль/л. Поляризационные измерения показали, что при переходе от хлоридных к сульфатным растворам наклон кривых увеличивается, а ширина участка псевдопассивности уменьшается, что свидетельствует об идентичности механизмов влияния сульфатов и хлоридов на коррозионный процесс и обуславливается большой поляризуемостью сульфат-ионов. Скорость коррозии стали Ст 3 в стационарных условиях при температурах 20, 40 и 80 °С составляет 0,11; 0,15; 0,48 г/(м2⋅ч). Показано, что молибдат натрия является слабым ингибитором, однако введение в его состав 25% бихромата повышает действие смеси до 90%. Аналогичное ингибирующее действие оказывает ZnSO4. При концентрации в среде 170 мг/л он практически не активен. Введение в состав ингибитора 25% триполифосфата приводит к повышению степени защиты до 60%.
В
качестве ингибиторов коррозии стали
Ст 3 и алюминиевых сплавов исследованы [40]
нитрилотриметилфосфоновая, оксиэтилидендифосфоновая
и карбоксиметиламинометилфосфоно
Электрохимическими методами с помощью вращающегося цилиндрического электрода из стали марки ASTM А36 изучено [41] влияние состояния поверхности металла и концентрации соединения Na2MoO4 ( до 1,25⋅10 -2% ) в природных водах на его ингибирующее действие. Для полированных образцов установлена некоторая критическая концентрация Na2MoO4, выше которой скорость их коррозии возрастает, тогда как при наличии на поверхности образцов продуктов коррозии до ингибирования природных вод соединением Na2MoO4, критическая концентрация данного соединения не регистрируется. Осциллирующие колебания потенциала разомкнутой цепи и данные импедансных измерений свидетельствуют о периодических переходах коррозирующих образцов из активного состояния в пассивное.