Автор работы: Пользователь скрыл имя, 05 Апреля 2011 в 18:34, курс лекций
Тема 1. Понятие и классификация экономических прогнозов.
Тема 2. Временные ряды.
Тема 3. Прогнозирование на основе обобщающих показателей динамики развития
Тема 4: Сглаживание временных рядов с помощью скользящей средней.
Тема 5: Методы измерения и изучения устойчивости временного ряда.
Доказано, что дисперсия экспоненциальной средней меньше дисперсии временного ряда. Между этими дисперсиями существует следующее соотношение:
Дst=
При высоком значении параметра адаптации дисперсия экспоненциальной средней незначительно отличается от дисперсии временного ряда. С уменьшением , дисперсия экспоненциальной средней уменьшается, и возрастает ее отличие от дисперсии временного ряда. Тем самым экспоненциальная средняя начинает играть роль фильтра, поглощающего колебания временного ряда. Таким образом, с одной стороны следует увеличивать параметр адаптации, а с другой стороны, для сглаживания случайных отклонений, его следует уменьшать. Эти два требования находятся в противоречии. Поиск компромиссного значения параметра адаптации и составляет задачу оптимизации модели. Достаточно часто поиск значения параметра адаптации осуществляется путем перебора.
При
использовании экспоненциальной средней
для прогнозирования
Yt=a1,t+et
a1,t – варьирующий во времени средний уровень ряда;
et – случайное неавтокоррелированное отклонение от тренда.
Прогнозная модель определяется следующим соотношением:
у прогн = a1,t
a1,t – оценка a1,t
a1,t = St
Процедура прогнозирования временного ряда по методу экспоненциального сглаживания состоит из следующих этапов:
Начальные условия обычно получают усреднением нескольких первых уровней ряда.
S0=
Рисунок - Схема построения адаптивных моделей прогнозирования
y(t) – фактические уровни временного ряда;
yǐ(t) – прогноз, сделанный в момент t на ǐ единиц времени (шагов) вперед;
Еt+1 – ошибка прогноза.
Информация о работе Коспект лекций "Статистичкские методы прогнозирования в экономике"