Автор работы: Пользователь скрыл имя, 15 Января 2012 в 18:30, курсовая работа
Экономическая статистика нашла широкое применение во многих отраслях экономики: в промышленности, в сельском хозяйстве, в строительстве, в торговле и т. д.
Цель курсовой работы - провести экономико-статистический анализ эффективности производства зерна в сельскохозяйственных предприятиях Кировской области.
Введение ………………………………………………………………………3
1 Экономические показатели условий и результатов деятельности с.-х. предприятий…………………………………………………………………4
2 Обоснование объема и оценка параметров статистической совокупност謬 .10
2.1 Обоснование объема выборочной совокупности………..…….…….....10
2.2 Оценка параметров и характера распределения статистической совокупности…….……………………………………….…….………….…11
3 Экономико-статистический анализ взаимосвязей между признаками изучаемого явления…….....…………………………..…….………..………….19
3.1 Метод статистических группировок….……...………………………...19
3.2 Дисперсионный анализ………...…………………..……………………22
3.3 Корреляционно-регрессионный анализ……...........……………………25
4 Расчет нормативов и анализ эффективности использования факторов на их основе……..……………………………………...……………………………….29
Заключение………………...…………………….……………………………..34
Список литературы………...………………………………………….……….36
Приложения……..……………….………………………………….………….37
По
мере роста урожайности наблюдается
значительно снижение себестоимости 1
ц. во второй группе зерна по сравнению
с первой группой на 166,7 руб, а так же снижение
себестоимости в третьей группе по сравнению
с первой на 154,7 руб. Так же наблюдается
увеличении окупаемости затрат при сравнении
первой и второй группы на 0,44 руб. ,а при
сравнении первой и третьей группы на
0,45 руб. Из этого можно сделать вывод, при
урожайности свыше 18,8 ц/га что наблюдается
эффект масштаба, т.е. при увеличении урожайности
возрастает окупаемость затрат.
Проведем группировку хозяйств по урожайности ц/га, а затем по каждой группе определим следующие показатели.
I. нижняя граница - x min= 125
верхняя граница – x min + i = 224
II. нижняя граница - x min + i = 224
верхняя граница - x min + 2i = 323
III. нижняя граница - x min + 2i = 323
верхняя граница - x min + 3h = 422
В первую группу попадает 2хозяйства, во вторую – 14 и в третью – 4.
По
полученным группам и по совокупности
в целом необходимо определить сводные
данные, а на их основе – относительные
и средние показатели (приложение 5).
Таблица 12 – Влияние цены на выручку и окупаемость затрат
Группы цене за 1ц. | Число предприятий | В среднем по группам | ||
Цена 1 ц. | выручка | окупаемость | ||
До 224 | 2 | 174 | 640 | 0,82 |
От 224 до323 | 14 | 379 | 876 | 0,99 |
Свыше 323 | 4 | 385 | 561 | 1,54 |
В среднем | 20 | 360 | 705 | 1,08 |
Сравнение показателей по группам позволяет сделать вывод, что с увеличением цены окупаемость возрастает. Так, в первой группе предприятий средний уровень окупаемости зерновых меньше, чем во второй на 0,17руб,а по сравнению с третьей уровень окупаемости зерновых в первой меньше на 0,72руб.
Но наблюдается самая высокая выручка во второй группе, она выше, чем в первой на 236 руб. и выше чем в третьей 315 руб.
3.2.
Дисперсионный анализ
Для оценки существенности различия между группами по величине какого-либо признака рекомендуется использовать критерий Фишера, фактическое значение которого определяется по формуле:
где -межгрупповая дисперсия;
-остаточная дисперсия;
где - средняя групповая;
- средняя общая;
m – число групп;
n – число вариантов.
1 группировка
Определим , используя данные таблицы 10:
где - общая вариация;
- межгрупповая вариация;
N-общее число вариантов.
Общую вариацию определяем по формуле:
,
где -варианты
Фактическое значение F-критерия сравнивают с табличным, которое определяется при заданном уровне значимости (0,05) и числе степеней свободы для межгрупповой и остаточной дисперсии.
при и составило 3,49 (приложение 6)
Если < , утверждают о значительном различие между группами. Влияние уровня интенсивности производства на урожайность зерновых следует признать несущественной.
Т.к. в приведенном
Величина эмпирического коэффициента детерминации, равная
показывает, что на 11,4% вариация себестоимости объясняется влиянием урожайности на 1 га.
Определим , используя данные таблицы 10:
где - общая вариация;
- межгрупповая вариация;
N-общее число вариантов.
Общую вариацию определяем по формуле:
,
где -варианты
Определяем критическое значение критерия Фишера:
Фактическое значение F-критерия сравнивают с табличным, которое определяется при заданном уровне значимости (0,05) и числе степеней свободы для межгрупповой и остаточной дисперсии.
при и составило 3,49(приложение 6)
Т.к. в приведенном
Величина эмпирического коэффициента детерминации, равная
показывает, что на 4,2% вариация
выручки объясняется влиянием уровня
цены на 1ц.
3.3
Корреляционно-регрессионный
анализ
На основе логического анализа и системы группировок выявляется перечень признаков, который может быть положен в основу регрессивной модели связи. Если результативный признак находится в стохастической (вероятностной) зависимости от многих факторов, то уравнения, выражающие эту зависимость, называются многофакторными уравнениями регрессии.
Покажем взаимосвязь между урожайностью (X1), себестоимостью 1ц. (X2) и окупаемостью затрат (Y). Для этого составим вспомогательную таблицу. Для математического выражения связи между выбранными факторами может быть использовано следующее уравнение:
Параметры a0, a1, a2 определяют в результате решения системы трех нормальных уравнений.
В результате решения данной системы на основе исходных данных по 20 предприятиям было получено следующее уравнение регрессии:
Коэффициент регрессии a1 = 0,12 показывает, что при увеличении урожайности на 1 ц с га, окупаемость 1 га увеличиваются в среднем на 0,12 руб. (при условии постоянства уровня себестоимости). Коэффициент a2 = 0,001 свидетельствует о среднем увеличении окупаемости затрат на 0,001 руб. при увеличении уровня себестоимости на 1 руб. в расчете на 1 ц. (при постоянстве урожайности).
Теснота связи между признаками, включёнными в модель, может быть определена при помощи коэффициентов множественной корреляции:
,
где , , - коэффициенты парной корреляции между x1, x2 и y. Формулы для нахождения данных коэффициентов можно представить следующим образом (расчеты коэффициентов представлены в приложении 3):
; ; ;
; ; ;
; ; ;
;
;
=
В рассматриваемом случае были получены следующие коэффициенты парной корреляции: = 0,23; = -0,81; =-0,03. Следовательно, между окупаемостью затрат (y) и урожайностью зерновых (x1) связь прямая тесная, окупаемостью затрат (у) и себестоимостью (x2) связь прямая тесная. При этом связь между урожайностью (х1) и себестоимостью (x2) связь прямая средняя, ( = -0,03), что говорит об отсутствии мультиколлинеарности.
Между всеми признаками связь тесная (R = 0,8). Коэффициент множественной детерминации (Д = R2 * 100% = 63,78%) показывает, что 63,78% вариации себестоимости производства 1 ц зерна определяется влиянием факторов, включенных в модель.
Для оценки значимости полученного коэффициента R воспользуемся критерием Фишера, фактическое значение которого определяется по формуле:
,
где n – число наблюдений,
m - число факторов.
Для рассматриваемого случая получим Fфакт =45
Fтабл определяется при заданном уровне значимости (0,05) и числе степеней свободы: V1 = n – m и V2 = m – 1(приложение 6). Для нашего случая V1=20, V2=1, Fтабл = 4, 35.
Поскольку Fфакт > Fтабл, значение коэффициента R следует считать достоверным, а связь между x1, x2 и y - тесной.
Для оценки влияния отдельных факторов и резервов, которые в них заложены, также определяют коэффициенты эластичности, бета-коэффициенты, коэффициенты отдельного определения.
Коэффициенты эластичности показывают, на сколько процентов в среднем изменяется результативный признак при изменении факторного на 1% при фиксированном положении другого фактора:
= 1,7; 0,26.
Таким образом, изменение на 1% урожайности ведёт к среднему увеличению уровня окупаемости затрат на 1,7%, а изменение на 1% уровня себестоимости – к росту уровня окупаемости затрат на 0,26 %.
При помощи β-коэффициентов даётся оценка различия в степени варьирования вошедших в уравнение факторов. Они показывают, на какую часть своего среднего квадратического отклонения ( ) изменится результативный признак при изменении соответствующего факторного на величину своего среднего квадратического отклонения ( ). β-коэффициенты вычисляются следующим образом:
0,25;
Это говорит о том, что наибольшее влияние на окупаемость затрат с учётом вариации способен оказать второй фактор, т.к. ему соответствует наибольшая абсолютная величина коэффициента.
Коэффициенты отдельного определения используются для определения в суммарном влиянии факторов доли каждого из них:
;
Таким образом, на долю влияния первого фактора приходится 55%, второго –29%.
4
Расчет нормативов
и анализ эффективности
использования факторов
на их основе