Автор работы: Пользователь скрыл имя, 22 Ноября 2012 в 19:36, курсовая работа
Цель моей работы: Изучение препаратов инсулина представленных на нашем рынке, их преимущества и недостатки.
Задачи: Рассмотрение технологического процесса получения инсулина в промышленном производстве.
Введение
Глава 1. Литературный обзор
1.1.Получение инсулина
1.2.Препараты инсулина
1.3. Шприцы, шприц-ручки и дозаторы инсулина
1.4.Техника инъекции инсулина………………………………………..
1.5.Факторы, влияющие на всасывание и действие инсулина………..
1.6. Осложнения инсулинотерапии……………………………………..
1.7. Упаковка инсулина
1.8. Хранение инсулина.
1.9. Современные пути совершенствования инсулинотерапии…..
Глава 2. Экспериментальная часть
Заключение
Литература
Содержание:
Введение
Глава 1. Литературный обзор
1.1.Получение инсулина
1.2.Препараты инсулина
1.3. Шприцы, шприц-ручки и дозаторы инсулина
1.4.Техника
инъекции инсулина…………………………………
1.5.Факторы, влияющие на всасывание и действие инсулина………..
1.6. Осложнения
инсулинотерапии…………………………………….
1.7. Упаковка инсулина
1.8. Хранение инсулина.
1.9. Современные пути совершенствования инсулинотерапии…..
Глава 2. Экспериментальная часть
Заключение
Литература
Введение:
Инсулин (от лат. insula -- остров) -- гормон пептидной природы, образуется в бета-клетках островков Лангерганса поджелудочной железы. Оказывает многогранное влияние на обмен практически во всех тканях.
Основная функция инсулина - обеспечивать проницаемость клеточных мембран для молекул глюкозы. В упрощенном виде можно сказать, что не только углеводы, но и любые питательные вещества в конечном счете расщепляются до глюкозы, которая и используется для синтеза других содержащих углерод молекул, и является единственным видом топлива для клеточных энергостанций - митохондрий. Без инсулина проницаемость клеточной мембраны для глюкозы падает в 20 раз, и клетки умирают от голода, а растворенный в крови избыток сахара отравляет организм.
Нарушение секреции инсулина вследствие деструкции бета-клеток -- абсолютная недостаточность инсулина -- является ключевым звеном патогенеза сахарного диабета 1-го типа. Нарушение действия инсулина на ткани -- относительная инсулиновая недостаточность -- имеет важное место в развитии сахарного диабета 2-го типа.
Число больных диабетом во
всем мире составляет 120 млн. (2,5% населения).
Каждые 10-15 лет количество больных
удваивается. По оценке Международного
института диабета (Австралия), к 2010
году в мире будет 220 млн. больных. В
Украине насчитывается около I млн.
больных, из которых 10-15% страдает наиболее
тяжелым инсулинозависимым
История открытия инсулина связана с именем русского врача И.М. Соболева (вторая половина 19 века), доказавшего, что уровень сахара в крови человека регулируется специальным гормоном поджелудочной железы.
В 1922 году инсулин, выделенный из поджелудочной железы животного, был впервые введен десятилетнему мальчику, больному диабетом. результат превзошел все ожидания, и уже через год американская фирма «Eli Lilly» выпустила первый препарат животного инсулина.
После получения первой промышленной партии инсулина в последующие несколько лет пройден огромный путь его выделения и очистки. В результате гормон стал доступен для больных сахарным диабетом 1 типа.
В 1935 году датский исследователь Хагедорн оптимизировал действие инсулина в организме, предложив пролонгированный препарат.
Первые кристаллы инсулина были получены в 1952 году, а в в1954 году английский биохимик Г.Сенджер расшифровал структуру инсулина. Развитие методов очистки гормона от других гормональных веществ и продуктов деградации инсулина позволили получиь гомогенный инсулин, называемый однокомпонентным.
В начале 70-х г.г. советскими учеными А.Юдаевым и С. Швачкиным был предложен химический синтез инсулина, однако осуществление данного синтеза в промышленном масштабе было дорогостоящим и нерентабельным.
В дальнейшем шло прогрессирующее
улучшение степени очистки
В 80- годах достижения молекулярной биологии позволили синтезировать с помощью E.coli обе цепи человеческого инсулина, которые были затем соединены в молекулу биологически активного гормона, а в Институте биоорганической химии РАН получен рекомбинантный инсулин с использованием генно-инженерных штаммов E.coli.
Цель моей работы: Изучение препаратов инсулина представленных на нашем рынке, их преимущества и недостатки.
Задачи: Рассмотрение технологического процесса получения инсулина в промышленном производстве.
Глава 1. Литературный обзор
1.1 Получение инсулина
Инсулин человека можно производить четырьмя способами:
1) полным химическим синтезом;
2) экстракцией из поджелудочных
желез человека (оба этих способа
не подходят из-за
3) полусинтетическим методом с помощью ферментно-химической замены в положении 30 В-цепи аминокислоты аланина в свином инсулине на треонин;
4) биосинтетическим способом по генноинженерной технологии. Два последних метода позволяют получить человеческий инсулин высокой степени очистки.
Рассмотрим получение инсулина биосинтетическим путем, с точки зрения преимущества этого метода.
Итак, преимущества получения инсулина биосинтетическим путем.
До внедрения в промышленность метода получения инсулина с использованием рекомбинантных микроорганизмов существовал только один способ получения инсулина – из поджелудочных желез крупного рогатого скота и свиней. Инсулин, получаемый из поджелудочной железы крупного рогатого скота отличается от инсулина человека на 3 аминокислотных остатка, а инсулин, получаемый из железы свиньи, только на один аминокислотный остаток, то есть он ближе к человеческому инсулину. Тем не менее, при введении белков, отличающихся по структуре от белков человека даже в таком незначительном выражении, возможно возникновение аллергических реакций. Такой инсулин, как чужеродный белок, также может и инактивироваться в крови образующимися антителами.
Кроме того, для получения 1 килограмма инсулина требуется 35 тысяч голов свиней (если известно, что годовая потребность в инсулине -1 тонна препарата). С другой стороны, биосинтетическим путем можно получить такое же количесвто инсулина, проведя биосинтез в 25 кубовом ферментере, используя рекомбинантный микроорганизм Escherichia coli.
Биосинтетический метод получения инсулина стал применяться в начале 80-х годов
(восьмидесятых годов).
Остановимся на схеме получения рекомбинантного инсулина (фирма Eli Lilli- Эли-Лилли, Соединенные Штаты Америки):
1. этап Путем химического
синтеза были созданы
2. этап. Каждый из синтетических генов вводят в плазмиды (в одну плазмиду вводят ген, синтезирующий цепь А, в другую плазмиду вводят ген, синтезирующий цепь В).
3. этап. Вводят ген,
кодирующий образование
4. этап. Вводят плазмиды в клетку Escherichia coli – кишечной палочки и получают две культуры продуцента, одна культура синтезирует А-цепь, вторая В-цепь.
5. этап. Помещают две культуры в ферментер. В среду добавляют галактозу, которая индуцирует образование фермента бетагалактозидазы. При этом плазмиды активно реплицируются, образуя много копий плазмид и, следовательно, много генов, синтезирующих А и В цепи.
6. этап. Клетки лизируют, выделяют А и В цепи, которые связаны с бетагалактозидазой. Все это обрабатывают бромцианом и отщепляют А и В-цепи от бетагалактозидазы. Затем производят дальнейшую очистку и выделение А и В цепей.
7. этап. Окисляют остатки цистеина, связывают и получают инсулин.
Инсулин, полученный этим путем является человеческим инсулином по своей структуре, что с самого начала терапии сводит к минимуму возникновение аллергических реакций.
Для получения очищенного инсулина человека выделенный из биомассы гибридный белок подвергают химко-ферментативной трансформации и соответствующей хроматографической очистке (фронтальной, гельпроникающей, анионообменной).
В Институте РАН получен рекомбинантный инсулин с использованием генно-инженерных штаммов E.coli, метод заключается в синтезе его биологического предшественника проинсулина, и позволяющий не проводить раздельного синтеза А и В цепей инсулина. Для выработки проинсулиновой части молекулы в Е.coli. вводят плазмиду (ее получают путем встраивания природной или чужеродной ДНК - так получают рекомбинантную молекулу РНК). Плазмида обеспечивает синтез рекомбинантного белка, представляющего собой лидерную последовательность и фрагмент белка, а также проинсулин человека с находящимися между ними остатком метионина (аминокислота). Проинсулиновую часть молекулы отделяют обработкой бромцианом в уксусной кислоте (расщепление идет избирательно - по остатку метионина). Смесь (проинсулиновая часть и лидерная последовательность) разделяют хроматографически. На следующем этапе в полученной последовательности проинсулина осуществляют правильное взаимное расположение цепей А и В, что выполняет центральная часть — пептид С. На следующем этапе ферментативным способом вычленяют связывающий С пептид. После ряда хроматографических очисток, включающих ионообменные, гелевые и ВЭЖХ, получаю человеческий инсулин высокой чистоты и природной активности.
Контроль качества генноинженерного инсулина предполагает контроль дополнительных показателей, характеризующих стабильность рекомбинантного штамма и плазмиды, отсутствие постороннего генетического материала в препарате, идентичность экспрессируемого гена и др.
1.2 Препараты инсулина
Препараты инсулина различаются по источнику получения. Инсулин свиньи и быка отличается от человеческого по аминокислотному составу: бычий - по трем аминокислотам, а свиной - по одной. Неудивительно, что при лечении бычьим инсулином побочные реакции развиваются гораздо чаще, чем при терапии свиным или человеческим инсулином. Эти реакции выражаются в иммунологической инсулинорезистентности, аллергии к инсулину, липодистрофиях (изменении подкожножировой клетчатки в месте инъекции).
Несмотря на явные недостатки бычьего инсулина, он все еще широко используется в мире. И все же недостатки бычьего инсулина в иммунологическом плане очевидны: его ни в коем случае не рекомендуется назначать больным впервые выявленным сахарным диабетом, беременным или для кратковременной инсулинотерапии, например в периоперационном периоде. Отрицательные качества бычьего инсулина сохраняются и при использовании его в смеси со свиным, поэтому смешанные (свиной+бычий) инсулины также не стоит использовать для терапии указанных категорий больных.
Препараты инсулина человека
по химической структуре полностью
идентичны человеческому
Основной проблемой
Препараты
инсулина в зависимости от начала
и длительности действия делятся
на следующие группы:
1) инсулины быстрого и сверхкороткого
действия;
2) инсулины короткого действия
(«простые» инсулины);
3) инсулины средней продолжительности
действия («промежуточные» инсулины);
4) инсулины длительного действия;
5) «смешанные» инсулины — комбинация
инсулинов разной продолжительности действия.
Количество препаратов инсулина,
имеющих разные названия, составляет
несколько десятков, и ежегодно добавляются
новые названия инсулинов различных
зарубежных, а в последние годы
и отечественных
Инсулины быстрого и сверхкороткого действия
Инсулины быстрого и сверхкороткого действия включают в настоящее время три новых препарата — лизпро (хумалог), аспарт (ново рапид, новолог) и глюлизин (апидра). Их особенность — в более быстром начале и окончании действия по сравнению с обычными, «простыми» ин-сулинами человека. Быстрое наступление глюкозоснижающего эффекта новых инсулинов обусловлено их ускоренным всасыванием из подкожно-жировой клетчатки. Особенности новых инсулинов позволяют уменьшить промежуток времени между их инъекциями и приемом пищи, снизить уровень послепищевой гликемии и уменьшить частоту возникновения гипогликемии.
Начало действия лизпро, аспарта и глюлизина происходит в диапазоне от 5 до 10—15 минут, максимальный эффект (пик действия) — через 60 минут, продолжительность действия — 3 — 5 часов. Эти инсулины вводят за 5 — 15 минут до еды или непосредственно перед ней. Установлено, что введение инсулина лизпро сразу же после еды также обеспечивает хороший контроль гликемии. Однако важно помнить, что введение этих инсулинов за 20 — 30 минут до еды может приводить к гипогликемии.
Больным, переходящим на введение указанных инсулинов, надо чаще контролировать уровни гликемии, пока они не научатся соотносить количество потребляемых углеводов и дозы инсулина. Таким образом, дозы препаратов устанавливаются в каждом конкретном случае индивидуально.
Если применяются только хумалог (Инсулин лизпро), ново рапид или новолог (инсулин аспарт), или апидра (инсулин глюлизин), то их можно вводить 4 — 6 раз в сутки, а в комбинации с инсулинами продленного действия — 3 раза в сутки. Превышение разовой дозы в 40 Ед допускается в исключительных случаях. Данные инсулины, выпускающиеся во флаконах, можно смешивать в одном шприце с препаратами человеческого инсулина с большей продолжительностью действия. При этом быстродействующий инсулин набирают в шприц первым. Инъекцию желательно сделать сразу же после смешивания. Данные инсулины, выпускающиеся в картриджах (специальных гильзах), не предназначены для приготовления смесей с какими-либо другими инсулинами.
Это важно!
Новые быстродействующие инсулины удобны
для больных, ведущих активный образ жизни,
их применение рекомендуют при острых
инфекциях, эмоциональных стрессах, увеличении
количества углеводов в пище, при приеме
лекарств, способствующих гипергликемии
(гормоны щитовидной железы, кортикостероиды
- преднизолон и др.), при непереносимости
других препаратов инсулина или при послепищевой
гипергликемии, которая плохо поддается
действию других инсулинов. Следует еще
раз подчеркнуть, что быстродействующие
инсулины следует применять в непосредственной
связи с приемом пищи.