Получение и применение моноклональных антител

Автор работы: Пользователь скрыл имя, 27 Декабря 2011 в 20:05, реферат

Краткое описание

Моноклональные антитела (монАТ), в отличие от поликлональных, являются продуктом секреции одной антитело- продуцирующей клетки, либо ее потомков (клона), образовавшихся в процессе деления этой клетки.

Содержимое работы - 1 файл

Курсов бт.docx

— 187.35 Кб (Скачать файл)

 

Б. Система  “биотин-антитело + стрептавидин + меченый биотин”: 

  

     В этом случае образуется целая сеть из молекул стрептавидина, связанного с меченым биотином. Следовательно, происходит многократное усиление сигнала. 
Применение антител второго и третьего порядков позволяет также упрощать процедуру определения микроорганизмов в мазке. При этом не обязательно иметь меченые антитела против всех бактерий. Достаточно иметь обычные антитела кролика или мыши против интересующего микроорганизма и меченые МКА против этих иммуноглобулинов. Если микроорганизм в мазке присутствует, то к нему “приклеятся” специфические антитела, а к ним уже - меченые. В результате мазок будет светится при люминесцентной микроскопии. Фотометрические или флуоресцентные методы могут быть использованы не во всех случаях, например, если измерение проводят очень мутной среде. 
Кроме красителя в качестве метки можно использовать фермент (иммуноферментный анализ) или радиоактивный изотоп (иммунорадиологический). От чувствительности детекции маркера зависит чувствительность метода анализа.

      
Радиоактивные метки.

  Выбор маркера и способа его «привязки» к антигену является одним из важных этапов в проведении анализа. Первоначально широко применялись радиоизотопные метки (радиоиммунный анализ - РИА), предложенные американскими исследователями (С. А. Берсон, Р. С. Ялоу, 1959). Однако в последние годы все более широкое использование в Качестве маркеров находят ферменты. Это обусловлено рядом принципиальных трудностей, связанных с применением изотопныx маркеров. Так, изотоп 125I имеет время полураспада 60 суток, чем ограничивается срок его использования. Изотоп 3Н имеет длительное время жизни (12.5 лет), однако под действием бэта-излучения происходит распад молекул антигена, в результате чего время жизни меченых 3Н-соединений тоже ограничено. Кроме того, эффективность счета трития существенно ниже, чем 125I. Ограничивающими факторами РИА являются сложность и высокая стоимость оборудования, необходимость централизованной системы распределения иммунохимических наборов, меченных радиоактивными изотопами, определенная опасность изотопов для окружающей среды.

     Учитывая  трудности использования радиоизотопных меток, были предложены в качестве маркеров ферменты. 
При иммуноферментном анализе антиген связывается с поверхностью лунки полистирольного планшета. В лунку добавляют антитела, несущие фермент в качестве метки, инкубируют и отмывают. Далее приливают субстрат, который меняет окраску при взаимодействии с этим ферментом. Изменение окраски можно измерить с помощью спектрофотометрии. Таким способом проводится индикация и количественная оценка биоорганических соединений с чувствительностью до 10-12 г/литр. 
В настоящее время известно более 2000 разных ферментов, однако только некоторые находят применение в иммуноферментном анализе. Это объясняется высокими требованиями, предъявляемыми к свойствам ферментов. Фермент должен быть высоко активен, а продукты его реакции детектироваться с высокой чувствительностью, он должен быть стабилен, так чтобы его активность сохранялась не менее одного года. Содержание фермента-маркера в определяемом образце должно быть минимальным. Именно из-за этого для разных объектов используют разные ферменты.

     Во  многих случаях, когда необходим  качественный результат, оценка иммунохимической реакции может быть проведена  визуально. 
 Для введения ферментативной метки разработано много разных химических, биохимических и иммунологических способов. 
 Первым реагентом, использованным для синтеза иммуноферментных конъюгатов, был глутаровый альдегид, реагирующий с аминогруппами лизина белковых молекул. С помощью глутарового альдегида получены конъюгаты антител и антигенов с пероксидазой, щелочной фосфатазой, глюкоамилазой. В настоящее время широко используются иммунопероксидазные конъюгаты и конъюгаты с бэта-галактозидазой. 
 Ковалентные методы получения иммуноферментных конъюгатов нашли весьма широкое распространение, однако к некоторых случаях действие сшивающего реагента отрицательно сказывается на ферментативной и иммунологической активности компонентов гибридной макромолекулы. В связи с этим определенный интерес представляют иммунологические методы введения ферментной метки. 
 Один из подходов получил название метода «гибридных антител». Ферментативным гидролизом получают Fab-фрагменты молекул антител против определяемого антигена и используемого фермента. Затем смесь продуктов гидролиза подвергают восстановлению меркаптоэтанодом; при этом Fab-фрагменты обратимо диссоциируют на симметричные части. После удаления восстанавливающего агента молекулы снова ассоциируют, образуя гибридные молекулы антител, специфичные к определяемому антигену и ферменту. При добавлении фермента образуется комплекс антитело—фермент (рис. 19, а). Гибридомная технология открывает принципиально новый путь получения гибридных антител, который заключается в том, что сливаются моноклональные клетки, специфичные против данного антигена и фермента-маркера, в результате чего образуются гибридомы второго поколения, синтезирующие антитела, с двумя специфичностями. 
 Другой путь заключается в том, что получают антитела одного и того же вида животного (например, кролика) против определяемого антигена и фермента, которые соединяют между собой через антитела другого вида животных (антитела барана против кролика). Добавление фермента к такой тройной молекуле также приводит к образованию комплекса антитело—фермент. В настоящее время разрабатываются подходы получения гибридных антител методами клеточной и генной инженерии, что позволит существенно упростить способ их получения. 
 Стабильность иммуноферментных конъюгатов при хранении — важнейший параметр, обусловливающий возможность их практического использования. Методы направленной стабилизации конъюгатов пока еще не разработаны. Не существует также корреляции между стабильностью конъюгатов и методом их получения. Однако высокая стабильность гибридных молекул обеспечивает их применение на практике и значительно превосходит стабильность антител и антигенов, меченных радиоактивными изотопами. В лиофилизованном состоянии ферментные конъюгаты сохраняют свои свойства до двух лет. 

  Кроме ферментов в качестве маркеров могут быть использованы субстраты. В частности, в иммунокофакторном анализе применяются в качестве меток АТФ и НАД, которые могут быть «пришиты» к молекуле антигена через адениновый остаток таким образом, что сохраняется их способность взаимодействовать с ферментом. Аналогично были использованы субстраты пероксидазы (люминол, изолюминол), которые могут быть окислены пероксидом водорода в реакции хемилюминесценции, катализируемой пероксидазой.    
 

      Основные  проблемы, возникающие  при использовании  монАТ в терапии: 

а) Подавляющее  большинство получаемых монАТ имеет животное происхождение (мышиные или крысиные), в результате чего иммунная система человека воспринимает их как чужеродный белок и быстро разрушает. МонАТ при этом не успевают проявить свое лекарственное действие.

б) Некоторые  монАТ нечеловеческого происхождения могут связывать и выводить из строя жизненно важные молекулы в организме человека, иногда это может привести к летальному исходу (например, агглютинация (склеивание) клеток крови под воздействием антител против поверхностных антигенов).

в) Мышиные  и крысиные монАТ являются для человека сильным иммуногеном, и введение их в терапевтических дозах может вызывать аллергические реакции вплоть до анафилактического шока.

     Во  избежание всех этих неприятностей  необходимо использовать для лечения  антитела не животного, а человеческого  происхождения.

Масштаб использования моноклональных антител в современном мире таков, что, если бы создатели технологии по получению монАТ запатентовали свое открытие, то суммарный патентный сбор превысил бы годовой бюджет всей Великобритании. 

3.Основные  этапы получения  моноклональных антител методом гибридомной технологии. 

     Долгое  время единственным источником монАТ были опухолевые линии антитело- продуцирующих клеток миеломы и плазмацитомы, выделенные из больных людей и животных. Такие клетки могли быть адаптированы к росту в культуральных средах и секретировать моноклональные антитела, но было очень трудно и зачастую даже невозможно определить антиген, к которому эти антитела были направлены. Понятно, что использование таких монАТ было очень ограничено. Ситуация кардинально изменилась в 1975 году, когда ученые Kohler и Milshtein предложили метод получения моноклональных антител предопределенной специфичности, за что позднее были удостоены Нобелевской премии.

     Смысл гибридомной технологии заключается в создании гибридной клетки (получившей название «гибридома»), получаемой путем слияния антитело- продуцирующего В-лимфоцита и опухолевой клетки миеломного или плазмацитомного ряда. (Рис.4). Такая гибридома обладает свойством секретировать антитела, взятой у В-лимфоцита, и способностью к бесконечному делению, взятой у опухолевой клетки.  

Источником  В-лимфоцитов для получения гибридомы служат лимфоидные органы животного, гипериммунизированного тем антигеном, против которого хотят получить монАТ.Гипериммунизация сильно повышает процентное содержание В-лимфоцитов, продуцирующих антитела желаемой специфичности, в общей популяции клеток лимфоидного органа. Лимфоциты, выделенные из тканей селезенки, лимфоузлов, периферической крови, не способны к самостоятельному делению и живут в культуре всего 10-14 дней. Миеломные клетки, напротив, могут жить и делиться в культуре сколь угодно долго, но не продуцируют антитела нужной специфичности (чаще используют линии миелом или плазмацитом, вообще не продуцирующие никаких антител).

     В результате процедуры гибридизации (слияния) образуется гетерогенная популяция  клеток, состоящая, во-первых, из неслившихся клеток лимфоидного органа; во-вторых, изнеслившихся клеток миеломы; в-третьих, из гибридов лимфоцит+лимфоцит и миелома+миелома; в четвертых, из гибридов лимфоцит+миелома, из которых лишь часть (часто весьма небольшая) стабильно продуцирует антитела нужной специфичности. Понятно, что необходимо отделить интересующие клетки от всех остальных. От неслившихся лимфоцитов и гибридов лимфоцит+лимфоцит избавляться не нужно: через несколько дней они умрут сами; от неслившихся опухолевых клеток и гибридов миелома+ миелома избавляются с помощью селективных сред (подробности ниже); среди оставшихся клеток (гибридов лимфоцит+миелома) отбирают нужные путем клонирования, когда из одной клетки выращивают популяцию клеток (клеточный клон) и отбирают среди таких клонов лишь те, которые стабильно продуцируют антитела требуемой специфичности.

     Секрецию  антител определяют различными методами скрининга супернатантов гибридом, другими словами, проводят анализ той культуральной среды, в которой рос конкретный клон. При наличии в супернатанте желаемых антител проводят еще одно или несколько клонирований, затем клетки нарабатывают для получения большего количества антител либо в культуре, либо в перитонеальной полости мышей (крыс). Далее антитела выделяют из культуральной или асцитной жидкости и проводят более детальные исследования на предмет их пригодности для использования в тех целях, для которых монАТ были получены. Клетки–продуценты можно заморозить и хранить в жидком азоте долгое время.    
 

Рассмотрим  теперь подробнее каждый из этапов получения монАТ: 

3.1. Иммунизация.

     Иммунизация - самый «творческий» этап в процессе получения моноклональных антител, именно эффективностью иммунизации определяется в наибольшей степени конечный успех всего предприятия. Тут невозможно дать какой-то единый рецепт, поскольку выбор схемы иммунизации и использование различных приемов, повышающих эффективность иммунизации, целиком зависят от свойств конкретного антигена. 

3.1.1.Выбор  объекта иммунизации.

     В первую очередь необходимо выбрать  объект иммунизации. На сегодняшний  день известны три вида гибридомных систем: мышиная, крысиная и человеческая. Самой распространенной сегодня является мышиная гибридома, а самая редкая- человеческая, чему имеется ряд причин:

а) Мыши- наиболее хорошо изученный и доступный объект для работы в лаборатории, то же относится и к линиям мышиных миелом, используемых для слияния.

б) Все  линии крысиных миелом, адаптированные для гибридомных работ, запатентованы, поэтому коммерческое использование крысиных гибридом регламентируется соответствующими патентами. Все мышиные линии миелом свободны от патентных ограничений.

в) Гипериммунизацию грызунов провести проще, чем иммунизацию человека. В большинстве случаев гипериммунизация человека вообще невозможна по этическим соображениям.

г) Источником иммунных В-лимфоцитов грызунов могут  служить ткани любых лимфоидных органов, тогда как у человека возможно лишь взять периферическую кровь, где общее содержание В-лимфоцитов не превышает 20% от всех клеток. В редких случаях можно использовать удаленные  миндалины пациентов, где содержание В-лимфоцитов может достигать 60%, но они, как правило, инфицированы и  секретируют антитела именно против этого инфекционного агента.

д) При  получении человеческой гибридомы существует проблема гистосовместимости клеток миеломы и В-лимфоцитов: у грызунов для слияния берутся В-лимфоциты и клетки миеломы, полученные от одной линии животных, и поэтому имеющих сходный репертуар антигенов гистосовместимости на клеточных поверхностях. Для человека это условие недостижимо, что в конечном итоге выражается очень низкой эффективностью слияния и крайне нестабильной антителопродукцией человеческих гибридом.

Информация о работе Получение и применение моноклональных антител