Автор работы: Пользователь скрыл имя, 20 Декабря 2011 в 10:11, курсовая работа
Предмет статистики - количественная сторона массовых общественных, социально-экономических и других явлений в неразрывной связи с их качественной стороной в конкретных условиях места и времени.
Применение в статистике конкретных методов предопределяется поставленными задачами и исходной информацией, а также дает возможность превращать разрозненную массу числовых данных в упорядоченную систему знаний, основываясь на которых можно принимать эффективные управленческие решения.
Цель курсового проекта – освоить методы и способы решения задач статистики для дальнейшего применения в решении управленческих задач.
Наиболее разработанной в теории статистики является методология так называемой парной корреляции, рассматривающая влияние вариации факторного признака x на результативный признак у и представляющая собой однофакторный корреляционный и регрессионный анализ.
Уравнение однофакторной (парной) линейной корреляционной связи:
где - теоретические значения результативного признака, полученные по уравнению регрессии; а, b - коэффициенты уравнения регрессии.
Построим уравнение регрессии. Для этого рассчитаем:
С помощью полученных значений найдем параметры уравнения:
0,11
69,08
   Уравнение 
регрессии будет иметь вид: 
   Проверим 
с помощью коэффициентов 
Для оценки тесноты связи при линейной форме уравнения применяется такой показатель как линейный коэффициент корреляции. Он рассчитывается по формуле:
   
r=0,921, следовательно связь сильная.
   Проверим 
значимость коэффициентов регрессии. 
Для этого необходимо рассчитать 
остаточное квадратное отклонение,  и 
: 
 
 
Найдем число степеней свободы:
К = n – 2 = 28
Уровень значимости 0,05
Следовательно, t табличное равно 2,0484
и
   Вывод: 
параметры получены случайно. 
 
 
 
 
 
 
 
   В 
результате выполнения данной курсовой 
работы были достигнуты все поставленные 
задачи: проведен анализ выборочной совокупности 
по двум показателям – капитал 
и чистые активы, построены графики, 
построена однофакторная модель 
взаимосвязи.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
БИБЛИОГРАФИЧЕСКИЙ СПИСОК