Статистическая сводка. Группировка данных

Автор работы: i*****************@gmail.com, 27 Ноября 2011 в 17:00, контрольная работа

Краткое описание

Задание 1. По исходным данным построить дискретный ряд распределения по группировочному признаку. Для целей анализа и сравнения применить характеристики центра группирования, к которым относятся средняя арифметическая, мода и медиана. Для характеристики степени отклонения распределения частот от симметричной формы рассчитать показатели эксцесса и ассиметрии. Проанализировать полученные значения показателей центра распределения и формы распределения. Сформулировать вывод.

Содержание работы

Раздел 1.Статистическая сводка. Группировка данных
Задание 1 3
Задание 2 8
Раздел 2. Абсолютные и относительные показатели
Задание 1 11
Раздел 3. Выборочный метод в статистических исследованиях
Задание 1 12
Раздел 4. Ряды динамики
Задание 1 15
Раздел 5. Индексный метод
Задание 1 19
Раздел 6. Статистическое изучение взаимосвязей
Задание 1 21
Список литературы 23

Содержимое работы - 1 файл

к.р статистика.docx

— 80.06 Кб (Скачать файл)
 

     Величина  интервала группировки определяется по формуле: 

      , 

     где d – величина интервала, k – число  групп, R – размах вариации, xmax- максимальное значение группировочного признака в совокупности, xmin- минимальное значение группировочного признака.

     xmax=84013; xmin=9844

     d=18542,25

     В результате подсчета предприятий в  каждой группе получим ряд распределения  предприятий по размеру запасов. Минимальное значение признака совпадает с верхней границей первой группы, а максимальное значение признака совпадает с нижней границей четвертой группы. 

     Таблица 2- Распределение предприятий по размеру основных средств

Номер группы Граница
нижняя верхняя
1 9844 28386,25
2 28386,25 46928,5
3 46928,5 65470,75
4 65470,75 84013
 

     Таблица 3 Группировка предприятий по величине основных средств.

Группы  предприятий по величине запасов, тыс.руб Число предприятий  в группе Предприятие Всего по группе, тыс.руб Средний размер основных средств по группе, тыс.руб.
9844 –  28386,25 18 3,5,6,8,9,10,12,13,14,15,17, 19,21,24,25,28,30,31  
355769
 
19764,94
28386,25 – 46928,5 6 2,4,16,23,26, 27 205433 34238,83
46928,5 –  65470,75 2 18,29 102708 51354
65470,75 – 84013 4 7,11,20,22 318193 79548,25
Итого 30   982103 184906,02
 
 

     Таблица4. - Расчет показателей вариации для предприятий, сгруппированных по величине запасов.

Группы  предприятий по величине запасов, млн.руб Число п/п

fi

Расчетные показатели
xi' xi' fi xi'-x (xi'-x)2 fi
9,8 – 28,4 18 19,12 344,1 -13,59 3324,39
28,4 – 46,9 6 37,66 225,9 4,95 147,02
46,9 – 65,5 2 56,20 112,4 23,49 1103,56
65,5 – 84,0 4 74,74 299 42,03 7066,08
Итого 30   981,4   11641,05
 

     Рассчитаем  коэффициенты вариации по аналитической  таблице. Среднее по по сгруппированным данным: 

     X= ==32,71 млн. руб. 

     Среднее квадратичное отклонение по сгруппированным  данным: 

     σ==19,70млн. руб. 

     Находим коэффициент вариации по формуле:

     ν=

     Коэффициент вариации по сгруппированным данным:

     ν=*100% =60,23%

     В расчетах коэффициент вариации значительно  больше 33%. Следовательно, рассмотренная  совокупность неоднородна и средняя  для нее недостаточна типична.

     Раздел 2. Абсолютные и относительные  показатели

     Задание1. Выполнить анализ показателей бухгалтерского баланса (Форма 1) путем расчета показателей структуры и динамики. Данные для выполнения задания взяты по ООО торговый дом «Светлый» на 30.07.2008г. По результатам расчетов охарактеризовать основные тенденции изменения структуры в динамике. Для выполнения аналитических исследований и оценок структуры актива и пассива баланса произвести группировку его статей.

     Таблица 1 – Статьи баланса

Статьи  баланса Базисный  период Отчетный  период Отклонения Динамика  отчетного периода в % к базисному
Сумма, тыс.руб. Удельный вес, % Сумма, тыс.руб. Удельный вес, % В сумме, тыс.руб. В процентах, %
А 1 2 3 4 5=3-1 6=4-2 7=3/1*100%
Внеоборотные  активы 554 8,8 496 8,5 -58 -0,3 89,5
Оборотные активы 5732 91,2 5346 91,5 -386 -0,3 93,3
Баланс 6286 100,0 5842 100,0      
Капитал и резервы 2969 47,2 3444 59,0 475 11,8 116,0
Долгосрочные  обязательства 0 0 0 0 0 0 0
Краткосрочные обязательства 3317 52,8 2398 41,0 -919 -11,8 72,3
Баланс 6286 100,0 5842 100,0      
 

           Для характеристики интенсивности изменения во времени  к таким показателям относят:

    Абсолютный  прирост, темп прироста, темп роста, коэффициент роста.

     Когда сравнение проводится с периодом (моментом) времени, начальным в ряду динамики, получают базисные показатели; при сравнении же с предыдущим периодом или моментом времени речь идет о цепных показателях. 
 

     Раздел 3. Выборочный метод  в статистических исследованиях

     Задание 1. Провести 25% механическую выборку из генеральной совокупности по показателю, который является для нас результативным. С вероятностью 0,954 рассчитать границы изменения средней величины в генеральной совокупности и сравнить с результатом, полученным на основании расчета по выборочной совокупности. Начало отбора начинать с номера предприятия совпадающего с номером варианта. Сформулировать вывод.

     Выборочный  метод применяется в тех случаях, когда проведение наблюдения невозможно или экономически нецелесообразно.

     Часть единиц, отобранных для наблюдения, принято называть выборочной совокупностью, а всю совокупность единиц, из которых  производится отбор, - генеральной. Качество результатов выборочного наблюдения зависит от того, насколько состав выборки представляет совокупность.

     По  заданию следует начать с номера предприятия, совпадающего с номером  варианта. При 33% выборке шаг отсчета (1/0,33) равен 3. 

Номер предприятия Запасы, млн. руб. Расчетные показатели
x-x (x-x)2
2 30,81 -9,17 84,09
5 26,46 -13,52 182,79
8 27,85 -12,13 147,14
11 84,01 44,03 1938,64
14 11,77 -28,21 795,80
17 20,65 -19,33 373,65
20 76,56 36,58 1338,10
23 33,52 -6,46 41,73
26 40,36 0,38 0,14
29 47,84 7,86 61,78
Итого 399,83   4963,86
 

     Величина  средней ошибки механического бесповторного  отбора для малых выборок определяется по упрощенной формуле: 

     µx = , 

     где N – объем генеральной совокупности (число входящих в нее единиц), n=10 – объем выборки (число обследованных  единиц), S2 – выборочная дисперсия (дисперсия признака в выборочной совокупности).

     Наиболее  часто употребляемые уровни доверительной  вероятности и соответствующие  значения отношения Стьюдента (коэффициента доверия) t при числе степеней свободы k=n – 1 = 9: 

P 0,9 0,95 0,98 0,99 0,999
t 1,740 2,110 2,567 2,898 3,965
 

     Для расчета границ изменения средней  характеристики генеральной совокупности по материалам выборки воспользуемся  следующими формулами:

     x= x±∆

     ∆ = t µx 

     (x – средняя выборочной совокупности;

     x – средняя генеральной совокупности;

     ∆ - предельная ошибка выборки;

     µx – средняя ошибка выборки). 

     Средняя стоимость основных средств на одном  предприятии по выборочной совокупности равна: 

     x = =39,98млн. руб. 

     дисперсия S2 =496,39; t = 3,965; n/N = 0,33, т.к. процент отбора составляет 33%. 

     µx = (1-0,33) = 6,08 

     Рассчитаем  предельную ошибку и определим границы  изменения средней: 

     ∆= 3,965 *6,08=24,11

     39,98 – 24,11 <x<39,98 + 24,11

     15,87<x<64.09 

     Таким образом, с вероятностью 0,999 можно  утверждать, что стоимость запасов на одном предприятии в генеральной совокупности будет находиться в пределах от 15,87 млн. руб. до 64,09 млн. руб. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Информация о работе Статистическая сводка. Группировка данных