Автор работы: Пользователь скрыл имя, 16 Января 2012 в 09:45, шпаргалка
Работа содержит ответы на вопросы по дисциплине "Статистика".
Билет №26
Эмпирический коэффициент детерминации который представляет долю межгруппопой дисперсии в общей дисперсии результативного признака и характеризует силу влияния группировочного признака на образование общей вариации. Он может быть рассчитан по формуле:
Данный коэффициент показывает долю вариации результативного признака у под влиянием фактора х. При отсутствии связи эмпирический коэффициент детерминации равен нулю, а при функциональной сильной связи — единице.
Эмпирическое корреляционное отношение представляется как корень квадратный из эмпирического коэффициента детерминации. Оно показывает тесноту связи между статистическими данными и определяется по формуле:
где числитель —
дисперсия групповых средних;
знаменатель — общая дисперсия.
Корреляционное отношение равно нулю, если связи между данными нет. В таком случае все групповые средние будут равны между собой и межгрупповой вариации не будет.
Корреляционное отношение равно единице тогда, когда связь функциональная. В этом случае дисперсия групповых средних будет равна общей дисперсии, т. е. внутригрупповой вариации не будет.
Чем значения корреляционного
отношения ближе к единице, тем
сильнее, ближе к функциональной
зависимости связь между
Если связь отсутствует, то h = 0. В этом случае межгрупповая дисперсия равна нулю (δ2=0), т.е. все групповые средние равны между собой и межгрупповой вариации нет. Это означает, что группировочный признак не влияет на вариацию исследуемого признака х.
Если связь функциональная, то h = 1. В этом случае дисперсия групповых средних равна общей дисперсии (). Это означает, что группировочный признак полностью определяет характер изменения изучаемого признака.
Чем больше значение
корреляционного отношения
Таблица 2.3 - Качественная оценка связи между признаками (шкала Чэддока)
Значение | Характер связи | Значение | Характер связи | |
η = 0 | Отсутствует | 0,5 ≤ η < 0,7 | Заметная | |
0 < η < 0,2 | Очень слабая | 0,7 ≤ η < 0,9 | Сильная | |
0,2 ≤ η < 0,3 | Слабая | 0,9 ≤ η < 1 | Весьма сильная | |
0,3 ≤ η < 0,5 | Умеренная | η = 1 | Функциональная |
Билет 27
Вариация альтернативного признака заключается в наличии или отсутствии изучаемого свойства у единиц совокупности. Количественно вариация альтернативного признака выражается двумя значениями: наличие у единицы изучаемого свойства обозначается единицей (1), а его отсутствие — нулем (0). Долю единиц, обладающих изучаемым признаком, обозначают буквой , а долю единиц, не обладающих этим признаком — через . Учитывая, что p + q = 1 (отсюда q = 1 — p), а среднее значение альтернативного признака равно
средний квадрат отклонений
Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным свойством ( ), на долю единиц, данным свойством не обладающих ( ).
Максимальное значение средний квадрат отклонения (дисперсия) принимает в случае равенства долей, т.е. когда т.е. . Нижняя граница этого показателя равна нулю, что соответствует ситуации, при которой в совокупности отсутствует вариация. Среднее квадратическое отклонение альтернативного признака:
Так, если в изготовленной
партии 3% изделий оказались
Среди множества варьирующих
признаков, изучаемых ста-тистикой,
существуют признаки, которыми обладают
одни единицы совокупности и не обладают
другие. Эти признаки называются альтернативными. Пр
Пусть р - доля единиц в совокупности, обладающих данным признаком (р = m/n); q - доля единиц, не обладающих данным признаком, причем р + q = 1. Альтернативный признак принима-ет всего два значения - 0 и 1 с весами соответственно q и р. Исчислим среднее значение альтернативного признака по фор-муле средней арифметической:
Таким образом, дисперсия альтернативного признака равна произведению доли на дополняющее эту долю до единицы чис-ло. Корень квадратный из этого показателя соответ-ствует среднему квадратическому отклонению альтернативного признака.
Информативность показателей вариации повышается, если они рассчитываются
для целей сравнительного анализа. При этом показатели рассчитанные по одной совокуп-
ности сопоставляются с показателями, рассчитанными по другой аналогичной совокупно-
сти или по той же самой, но относящейся к другому периоду времени. Например, иссле-
дуется динамика вариации на товары длительного пользования по месячным или ежегод-
ным данным в одном и том же торговом предприятии или за один и тот же период време-
ни, но по разным регионам.
Билет 28
Цели и этапы выборочного наблюдения
Выборочное наблюдение в настоящее время находит достаточно широкое применение в обследованиях промышленных и сельскохозяйственных предприятий, изучении цен на потребительском рынке, в обследованиях бюджетов и занятости населения. Выборочный метод является важнейшим источником информации в контроле качества продукции, в маркетинговых и социологических исследованиях.
Выборочным наблюдением - несплошное обследование, при котором признаки регистрируются у отдельных единиц изучаемой статистической совокупности, отобранных с использованием специальных методов, а полученные в процессе обследования результаты с определенным уровнем вероятности распространяются на всю исходную совокупность.
Преимущества выборочного наблюдения заключаются в существенной экономии различного вида ресурсов, а именно:
а) финансовых средств, затрачиваемых на сбор и обработку данных, подготовку и оплату кадров;
б) материально-технических ресурсов (канцелярские товары, оргтехника, расходные материалы, транспортное обслуживание и т.п.);
в) трудовых ресурсов, привлекаемых к обследованию на всех его этапах;
г) сокращении времени, затрачиваемого как на получение первичной информации, так и на ее последующую обработку вплоть до публикации итоговых материалов.
В то же время,
при решении ряда задач выборочное
наблюдение является единст-венно возможным
способом получения необходмой информации.
Так, контроль многих видов продукции
связан с их порчей, потерей товарного
вида, нарушением герметизации и т.п. Например,
нельзя проверить каждую производимую
предприятием электролампу на соблюдение
требований по продолжительности горения.
Нельзя проверить на соответствие стандартам
каждого пакета с соком или молочной продукцией,
так как это связано с вскрытием их
упаковки. В подобных случаях контроль
качества может осуществляться только
с использованием выборочного метода.
Билет 29 Виды способы, методы отбора
По виду различаются индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе — качественно однородные группы (серии) единиц, а комбинированный отбор предполагает сочетание первого и второго видов.
Отбор единиц в выборочную совокупность может быть повторным или бесповторным. При повторном отборе попавшая в выборку единица подвергается обследованию, т.е. регистрации значений ее признаков, возвращается в генеральную совокупность и на равне с другими единицами участвует в дальнейшей процедуре отбора. Таким образом, некоторые единицы могут попадать в выборку дважды, трижды или даже большее число раз. И при изучении выборочной совокупности они будут рассматриваться как отдельные независимые наблюдения. Отметим, что число единиц генеральной совокупности, участвующих в отборе, при таком подходе остается постоянным. Поэтому вероятность попадания в выборку для всех единиц совокупности на протяжении всего процесса отбора также не меняется. Например, при проведении маркетинговых исследований мы не можем сколько-нибудь точно оценить, какое число потребителей предпочитают стиральный порошок конкретной торговой марки, сколько покупателей предпочитают делать покупки именно в данном супермаркете и т.д. Поэтому возможно повторение совершенно идентичных единиц как по причине практически неограниченных объемов совокупности, так и вследствие возможной повторной регистрации. Предположим, при проведении обследования один и тот же покупатель может дважды прийти в магазин и дважды подвергнуться обследованию.
1. простой
случайный отбор, при котором
объектов случайно извлекаются из генеральной
совокупности
объектов (например с помощью таблицы
или датчика случайных чисел), причем каждая
из возможных выборок имеют равную вероятность.
Такие выборки называются собственно-
2. простой отбор с помощью регулярной процедуры осуществляется с помощью механической составляющей (например, даты, дня недели, номера квартиры, буквы алфавита и др.) и полученные таким способом выборки называются механическими;
3. стратифицированный отбор
заключается в том, что генеральная совокупность
объема
подразделяется на подсовокупности или
слои (страты) объема
так что
. Страты представляют собой однородные
объекты с точки зрения статистических
характеристик (например, население делится
на страты по возрастным группам или социальной
принадлежности; предприятия — по отраслям).
В этом случае выборки называются стратифицированными
4. методы серийного отбора
используются для формирования серийных илигнезд
5. комбинированный (
Билет 30
Ошибки репрезентативности обусловлены тем обстоятельством, что выборочная совокупность не может по всем параметрам в точности воспроизвести совокупность генеральную. Получаемые расхождения или ошибки репрезентативности позволяют заключить, в какой степени попавшие в выборку единицы могут представлять всю генеральную совокупность. При этом следует различать систематические и случайные ошибки репрезентативности.
Систематические ошибки репрезентативности связаны с нарушением принципов формирования выборочной совокупности. Например, вследствие каких-либо причин, связанных с организацией отбора, в выборку попали единицы, характеризующиеся несколько большими или, наоборот, несколько меньшими по сравнению с другими единицами значениями наблюдаемых признаков. В этом случае и рассчитанные выборочные характеристики будут завышенными или заниженными.