Автор работы: Пользователь скрыл имя, 09 Декабря 2011 в 21:17, курсовая работа
Цель курсовой работы – изучить некоторые статистические методы: группировка и корреляционный анализ.
Необходимость осуществлять разнообразные группировки обуславливается существованием множества форм развития социально-экономических явлений, а также конкретных целей исследования и неоднородных по содержанию исходных данных. В курсовой работе рассматриваются различные виды группировок и показывается их применение в изучении состава кадров на промышленном предприятии.
Введение 3
1. Статистический метод группировки 5
1.1. Понятие группировки 5
1.2. Виды статистических группировок 5
1.3. Принципы построения группировки 7
1.4. Применение метода группировки при изучении состава кадров на промышленном предприятии 10
2. Корреляционный анализ 14
2.1. Понятие корреляционной связи 14
2.2. Статистические методы выявления наличия корреляционной связи
между двумя признаками 15
2.3. Множественная корреляция 19
2.4. Применение множественной корреляции к изучению состава кадров на промышленном предприятии 22
2.5. Анализ коэффициентов регрессии 24
Заключение 24
Список литературы 27
Приложение 28
1. Статистический метод группировки 5
1.1. Понятие группировки 5
1.2. Виды
статистических группировок
1.3. Принципы построения группировки 7
1.4. Применение
метода группировки при
2. Корреляционный анализ 14
2.1. Понятие корреляционной связи 14
2.2. Статистические
методы выявления наличия
между двумя признаками
2.3. Множественная корреляция 19
2.4. Применение
множественной корреляции к
2.5. Анализ
коэффициентов регрессии
Список литературы 27
Переход к рыночной экономике наполняет новым содержанием работу коммерсантов, экономистов и менеджеров. Это предъявляет повышенные требования к уровню их статистической подготовки. Овладение статистической методологией – одно из непременных условий познания конъюнктуры рынка, изучения тенденций и прогнозирования спроса и предложения, принятия оптимальных решений на всех уровнях управления, коммерческой деятельности на рынке товаров и услуг.
Цель курсовой работы – изучить некоторые статистические методы: группировка и корреляционный анализ.
Необходимость осуществлять разнообразные группировки обуславливается существованием множества форм развития социально-экономических явлений, а также конкретных целей исследования и неоднородных по содержанию исходных данных. В курсовой работе рассматриваются различные виды группировок и показывается их применение в изучении состава кадров на промышленном предприятии.
Однако группировки строятся на основе расчленения статистической совокупности на части по существенным для них признакам. На практике же часто требуется знать, как изменение одних признаков влияет на изменение других. Изучение взаимосвязей на рынке товаров и услуг – важнейшая функция менеджеров, коммерсантов, экономистов, и инструментом осуществления этой функции является корреляционный анализ. В курсовой работе рассматривается как парная корреляция, т.е. влияние вариации факторного признака на результативный, так и множественная регрессия, занимающаяся выявлением зависимости результативного признака от нескольких признаков-факторов. С помощью метода корреляционного анализа выявляется зависимость уровня заработной платы от стажа работников, а также проводится многофакторный корреляционный анализ зависимости заработной платы от степени выполнения норм и разряда персонала промышленного предприятия.
Для наглядного изображения результатов статистических группировок и корреляционного анализа в курсовой работе используются графические методы.
1.СТАТИСТИЧЕСКИЙ МЕТОД ГРУППИРОВКИ
1.1.Понятие
группировки
Одним из основных и наиболее
распространённых методов
По
своей роли в процессе исследования
метод группировок выполняет
функции, аналогичные функциям эксперимента
в естественных науках: посредством
группировок по отдельным признакам
и комбинации самих признаков
статистика имеет возможность выявить
закономерности и взаимосвязи явлений
в условиях, в известной мере определяемых
ею. При использовании метода группировок
появляется возможность проследить взаимоотношения
различных факторов.
1.2.Виды
статистических группировок
Статистические группировки по задачам, решаемым с их помощью, делятся: типологические, структурные и аналитические.
Типологическая группировка – это разделение качественно однородной совокупности на классы, социально-экономические типы, однородные группы единиц в соответствии с правилами научной группировки. Например, типологической группировкой является группировка промышленных предприятий по формам собственности.
Одна и та же совокупность может быть качественно однородной в одном статистическом исследовании и разнородной в другом. Так, совокупность промышленных предприятий является однородной в случае анализа показателей брака при производстве какой-либо продукции, и неоднородной в случае, если изучается налогообложение предприятий.
При проведении типологической группировки основное внимание должно быть уделено идентификации типов социально-экономических явлений. Она производится на базе глубокого теоретического анализа исследуемого явления.
Другой вид группировки – структурная. Структурной называется группировка, в которой происходит разделение однородной совокупности на группы, характеризующие её структуру по какому-либо варьирующему признаку. С помощью таких группировок могут изучаться: состав населения по полу, возрасту, месту проживания; состав предприятий по численности занятых, стоимости основных производственных фондов; структура депозитов по сроку их привлечения и т.д.
Группировка, выявляющая взаимосвязи между изучаемыми явлениями и их признаками, называется аналитической группировкой.
Всю совокупность признаков можно разделить на две группы: факторные и результативные. Факторными называются такие признаки, под воздействием которых изменяются другие – они и образуют группу результативных признаков. Взаимосвязь проявляется в том, что с возрастанием признака-фактора систематически возрастает или убывает среднее значение результативного признака.
Особенностью
аналитической группировки
Преимущество метода аналитических группировок перед другими методами анализа связи (например, корреляционным анализом) состоит в том, что он не требует соблюдения каких-либо условий для его применения, кроме одного – качественной однородности исследуемой совокупности.
Группировка,
в которой группы образованы по одному
признаку, называется простой, а группировка,
в которой разделение идёт по двум
и более признакам, взятым в сочетании
(комбинации), является сложной. Сложные
группировки дают возможность изучать
распределение единиц совокупности одновременно
по нескольким признакам. Однако с увеличением
количества признаков растет число групп.
Однако группировка с большим числом групп
становится не наглядной. Поэтому на практике
строят сложные группировки не более чем
по трём признакам.
1.3.Принципы
построения группировки
При построении группировки следует придерживаться следующей схемы:
Для
определения оптимального числа
групп используют формулу Стерджесса
:
n = 1 + 3,322*lgN
,
где n – число групп,
N – число единиц совокупности.
Другой способ определения числа групп основан на применении среднего квадратичного отклонения ( ). Если величина интервала 0,5 то совокупность разбивается на 12 групп, когда величина интервала 2/3 и , то совокупность делится соответственно на 9 и 6 групп.
Если совокупность делится на 12 групп, то интервалы строятся в промежутке (x-3; x+3) с шагом 0,5 , если на 6 групп, то интервалы строятся в том же промежутке с шагом .
Среднее
квадратичное отклонение рассчитывается
по формуле:
где xi- i-е значение варьирующего признака,
x- среднее значение признака по
совокупности, которое находится
по формуле:
Интервалы могут быть равными и неравными. Если вариация признака проявляется в сравнительно узких границах, и распределение носит более или менее равномерный характер, то строят группировку с равными интервалами.
Величина
равного интервала определяется
по следующей формуле:
где xmax и xmin- максимальное и минимальное значение признака в совокупности.
Интервал, у которого обозначены обе границы, называют закрытым, а интервал, у которого указана только одна граница (верхняя или нижняя) – открытым.
Неравные интервалы применяются в статистике, когда значения признака варьируются неравномерно и в значительных размерах, что характерно для большинства социально-экономических явлений, особенно на макроэкономическом уровне.
Неравные интервалы могут быть прогрессивно возрастающими и убывающими в арифметической или геометрической прогрессии. Величина интервалов, изменяющихся в арифметической прогрессии, определяются следующим образом:
в геометрической
прогрессии:
где a – константа – число, которое будет положительным при прогрессивно возрастающих интервалах и отрицательным – при прогрессивно убывающих интервалах;
q – константа – положительное число, которое при прогрессивно возрастающих интервалах будет больше 1, а при прогрессивно убывающих – меньше 1.
При
изучении социально-экономических
явлений на макроуровне часто
применяют группировки с