Автор работы: Пользователь скрыл имя, 17 Января 2011 в 00:55, контрольная работа
Статистическая наука имеет в своем арсенале метод, позволяющий соизмерить показатели какого-либо явления во времени и пространстве и сравнивать фактические данные с любым эталоном, в качестве которого может быть план, прогноз или какой-либо норматив. Это индексный метод, оперирующий с относительными показателями, в статистике называемыми индексами.
1. Индексный анализ. Индексы постоянного, переменного состава, структурных сдвигов
3
2.Обработка рядов динамики. Аналитическое выравнивание 8
Задача 2.5 21
Задача 4.5 23
Задача 7.2 25
Список использованной литературы 28
Содержание
1. Индексный
анализ. Индексы постоянного, |
3 |
2.Обработка рядов динамики. Аналитическое выравнивание | 8 |
Задача 2.5 | 21 |
Задача 4.5 | 23 |
Задача 7.2 | 25 |
Список использованной литературы | 28 |
1.
Индексный анализ.
Индексы постоянного,
переменного состава,
структурных сдвигов
Статистическая наука имеет в своем арсенале метод, позволяющий соизмерить показатели какого-либо явления во времени и пространстве и сравнивать фактические данные с любым эталоном, в качестве которого может быть план, прогноз или какой-либо норматив. Это индексный метод, оперирующий с относительными показателями, в статистике называемыми индексами.
В практике статистики индексы наряду со средними величинами являются наиболее распространенными статистическими показателями. С их помощью характеризуется развитие национальной экономики в целом и ее отдельных отраслей, исследуется роль отдельных факторов в формировании важнейших экономических показателей, индексы используются также в международных сопоставлениях экономических показателей, определении уровня жизни, мониторинге деловой активности в экономике и т.д.
Индекс (лат. index) — это относительная величина, показывающая, во сколько раз уровень изучаемого явления в данных условиях отличается от уровня того же явления в других условиях. Различия условий могут проявляться во времени (динамические индексы), в пространстве (территориальные индексы) и в выборе в качестве базы сравнения какого-либо условного уровня.
По охвату элементов совокупности (ее объектов, единиц и их признаков) различают индексы индивидуальные (элементарные) и сводные (сложные), которые, в свою очередь, делятся на общие и групповые.
В статистике под индексом понимается относительный показатель, который выражает соотношение величин какого-либо явления во времени, в пространстве, или сравнение фактических данных с любым эталоном.
С помощью индексов решаются следующие задачи:
измерение динамики социально-экономического явления за два периода времени и более;
измерение динамики среднего экономического показателя;
измерение соотношения показателей по разным регионам;
определение
степени влияния изменений
В международной практике индексы принято обозначать символами i и I (начальная буква латинского слова index). Буквой «i» обозначаются индивидуальные (частные) индексы, буквой «I» — общие индексы.
Помимо этого, используются определенные символы для обозначения показателей структуры индексов:
q — количество (объем) какого-либо товара в натуральном выражении;
р — цена единицы товара;
z
— себестоимость единицы
t
— затраты времени на
w
— выработка продукции в
v
— выработка продукции в
Т — общие затраты времени (tq) или численность рабочих;
рq — стоимость продукции или товарооборот;
zq — издержки производства.
Знак внизу справа от символа означает период: 0 — базисный; 1 — отчетный.
Все индексы можно классифицировать по следующим признакам:
степень охвата явления;
база сравнения;
вид весов (соизмерителя);
форма построения;
объект исследования;
состав явления;
период исчисления.
По степени охвата явления индексы бывают индивидуальные и сводные (общие).
Индивидуальные индексы служат для характеристики изменения отдельных элементов сложного явления. Например, изменение объема производства отдельных видов продукции (телевизоров, электроэнергии и т.д.), а также цен на акции какого-либо предприятия.
Сводные (сложные) индексы служат для измерения сложного явления, составные части которого непосредственно несоизмеримы. Например, изменения физического объема продукции, включающей разноименные товары, индекса цен акций предприятий региона и т.п.
По базе сравнения индексы бывают динамические и территориальные.
Динамические индексы служат для характеристики изменения явления во времени. Например, индекс цен на продукцию в 1996 г. по сравнению с предыдущим. При исчислении динамических индексов происходит сравнение значения показателя в отчетный период со значением этого же показателя за предыдущий период, который называют базисным. Динамические индексы бывают базисные и цепные.
Территориальные индексы служат для межрегиональных сравнений. Используются, как правило, в международной статистике.
По виду весов индексы бывают с постоянными и переменными весами.
По форме построения различают агрегатные и средние индексы. Агрегатная форма является наиболее распространенной. Средние индексы являются производными от агрегатных.
По характеру объекта исследования индексы бывают производительности труда, себестоимости, физического объема продукции и т.п.
По составу явления индексы бывают постоянного (фиксированного) состава и переменного состава.
По периоду исчисления индексы бывают годовые, квартальные, месячные, недельные.
Индексный
метод широко применяется для
изучения динамики средних величин
и выявления факторов, влияющих на
динамику средних. С этой целью исчисляется
система взаимосвязанных
Индекс переменного состава Iпер представляет собой отношение двух взвешенных средних величин, характеризующее изменение индексируемого (осредняемого) показателя.
Величина
этого индекса характеризует
изменение средней взвешенной за
счет влияния двух факторов: осредняемого
показателя у отдельных единиц совокупности
и структуры изучаемой
Индекс постоянного (фиксированного) состава Iфикс представляет собой отношение средних взвешенных с одними и теми же весами (т.е. при постоянной структуре).
Индекс постоянного состава учитывает изменение только индексируемой величины и показывает средний размер изменения изучаемого показателя у единиц совокупности.
Индекс структурных сдвигов Iстр характеризует влияние изменения структуры изучаемого явления на динамику среднего уровня индексируемого показателя.
Под структурными изменениями понимается изменение доли отдельных групп единиц совокупности к общей их численности.
Система взаимосвязанных индексов при анализе динамики средних величин имеет вид:
Доля отдельной группы:
I
пост.соства тождественен
Абсолютное изменение среднего уровня качественного показателя под влиянием каждого фактора в отдельности, а также их совместного изменения,определяется
как разность
делимого и делителя по соответствующему
индексу.
2.Обработка
рядов динамики. Аналитическое
выравнивание
Одной из важнейших задач статистики является изучение изменений анализируемых показателей во времени, т.е. их динамика. Эта задача решается с помощью анализа рядов динамики (или временных рядов). Ряд динамики (или динамический ряд) представляет собой ряд расположенных в хронологической последовательности числовых значений статистического показателя, характеризующих изменение общественных явлений во времени.
В каждом ряду динамики имеются два основных элемента: время t и конкретное значение показателя (уровень ряда) у. Уровни ряда — это показатели, числовые значения которых составляют динамический ряд. Время — это моменты или периоды, к которым относятся уровни.
Построение и анализ рядов динамики позволяют выявить и измерить закономерности развития общественных явлений во времени. Эти закономерности не проявляются четко на каждом конкретном уровне, а лишь в тенденции, в достаточно длительной динамике. На основную закономерность динамики накладываются другие, прежде всего случайные, иногда сезонные влияния. Выявление основной тенденции в изменении уровней, именуемой трендом, является одной из главных задач анализа рядов динамики.
По времени, отраженному в динамических рядах, они разделяются на моментные и интервальные.
Моментным называется ряд динамики, уровни которого характеризуют состояние явления на определенные даты (моменты времени).
Интервальным (периодическим) рядом динамики называется такой ряд, уровни которого характеризуют размер явления за конкретный период времени (год, квартал, месяц).
Значения уровней интервального ряда, в отличие от уровней моментного ряда, не содержатся в предыдущих или последующих показателях, их можно просуммировать, что позволяет получать ряды динамики более укрупненных периодов. Например, суммирование уровней добычи нефти за каждый год по данным, приведенным выше, позволяет определить ее добычу за все 6 лет в целом и в среднем за год.
Интервальный ряд, где последовательные уровни могут суммироваться, можно представить как ряд с нарастающими итогами. При построении таких рядов производится последовательное суммирование смежных уровней. Этим достигается суммарное обобщение результата развития изучаемого явления с начала отчетного периода (месяца, квартала, года и т.д.).
Уровни в динамическом ряду могут быть представлены абсолютными, средними или относительными величинами. Так, в рассмотренных рядах динамика уровней выражена абсолютными статистическими величинами. Средними величинами могут выражаться уровни, характеризующие динамику средней реальной заработной платы в промышленности, динамику урожайности зерновых культур (ц/га). Относительными величинами характеризуется, например, динамика доли городского и сельского населения (%) и уровня безработицы.
По расстоянию между уровнями ряды динамики подразделяются на ряды с равностоящими и неравностоящими уровнями по времени.
Ряды
динамики могут быть изображены графически.
Графическое изображение
Наряду с линейной диаграммой, для графического изображения рядов динамики в целях популяризации широко используются столбиковая диаграмма, секторная диаграмма и другие виды диаграмм (фигурные, квадратные, полосовые и т.п.).
Информация о работе Индексный анализ. Индексы постоянного, переменного состава, структурных сдвигов