Автор работы: Пользователь скрыл имя, 28 Февраля 2012 в 16:50, реферат
Цель работы: познакомится с таким статистическим методом, как дисперсионный анализ.
Дисперсионный анализ (от латинского Dispersio – рассеивание) – статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.
Введение…………………….……………………………………………....3
Дисперсионный анализ………………………………………………....4
1.1 Основные понятия дисперсионного анализа…………………..……4
1.2 Однофакторный дисперсионный анализ………………………….....6
1.3 Многофакторный дисперсионный анализ…………………….........12
Применение дисперсионного анализа в различных задачах и
исследованиях……………………………………………………………………...16
2.1 Использование дисперсионного анализа при изучении
миграционных процессов……………………………………………….……..….16
2.2 Принципы математико-статистического анализа данных
медико-биологических исследований……………...……………….……………17
2.3 Биотестирование почвы……………...…………………………..…...19
2.4 Грипп вызывает повышенную выработку гистамина…………..…..21
2.5 Дисперсионный анализ в химии……………………………...…..….22
2.6 Использование прямого преднамеренного внушения в
бодрствующем состоянии в методике воспитания физических качеств………23
2.7 Купирование острой психотической симптоматики у больных
шизофренией атипичным нейролептиком……………………………………….26
2.8 Снование фасонной пряжи с ровничным эффектом………….....….28
2.9 Сопутствующая паталогия при полной утрате зубов у лиц
пожилого и старческого возраста………………………………...………………29
3 Дисперсионный анализ в контексте статистических
методов…...................................................................................................................31
3.1 Векторные авторегрессии……………………………………...……..34
3.2 Факторный анализ………………………………………………….…37
3.3 Парная регрессия. Вероятностная природа регрессионных
моделей……………………………………………………………………….….…41
Заключение………………………………………………………….…..... 44
Список использованных источников………………………………....….45
- бифакторная
модель. Допускает влияние на
вариацию элементарных
- центроидный метод. В нем корреляции между переменными рассматриваются как пучок векторов, а латентный фактор геометрически представляется как уравновешивающий вектор, проходящий через центр этого пучка. : Метод позволяет выделять несколько латентных и характерные факторы, впервые появляется возможность соотносить факторное решение с исходными данными, т.е. в простейшем виде решать задачу аппроксимации.
Современные аппроксимирующие методы часто предполагают, что первое, приближенное решение уже найдено каким либо из способов, последующими шагами это решение оптимизируется. Методы отличаются сложностью вычислений. К этим методам относятся:
- групповой
метод. Решение базируется на
предварительно отобранных
- метод главных факторов. Наиболее близок методу главных компонент, отличие заключается в предположении о существовании характерностей;
- метод максимального
правдоподобия, минимальных
остатков, а-факторного
анализа канонического
Эти методы позволяют последовательно улучшить предварительно найденные решения на основе использования статистических приемов оценивания случайной величины или статистических критериев, предполагают большой объем трудоемких вычислений. Наиболее перспективным и удобным для работы в этой группе признается метод максимального правдоподобия.
Основной задачей,
которую решают разнообразными методами
факторного анализа, включая и метод
главных компонент, является сжатие
информации, переход от множества
значений по m элементарным признакам с
объемом информации n х m к ограниченному
множеству элементов матрицы факторного
отображения (m х r) или матрицы значений
латентных факторов для каждого наблюдаемого
объекта размерностью n х r, причем обычно
r < m.
Методы факторного анализа позволяют
также визуализировать структуру изучаемых
явлений и процессов, а это значит определять
их состояние и прогнозировать развитие.
Наконец, данные факторного анализа дают
основания для идентификации объекта,
т.е. решения задачи распознавания образа.
Методы факторного анализа обладают свойствами,
весьма привлекательными для их использования
в составе других статистических методов,
наиболее часто в корреляционно-регрессионном
анализе, кластерном анализе, многомерном
шкалировании и др. /18/.
3.3 Парная
регрессия. Вероятностная
Если рассмотреть
задачу анализа расходов на питание
в группах с одинаковыми
где εi - случайная ошибка;
α и β - константы (теоретически), хотя могут меняться от модели к модели.
Предпосылки для парной регрессии:
- X и Y связаны линейно;
- Х - неслучайная переменная с фиксированными значениями;
- ε - ошибки нормально распределены N(0,σ2);
- ;
- .
На рисунке 3.1 представлена модель парной регрессии.
Рисунок 3.1 – Модель парной регрессии
Эти предпосылки описывают классическую линейную регрессионную модель.
Если ошибка имеет ненулевое среднее, исходная модель будет эквивалентна новой модели и другим свободным членом, но с нулевым средним для ошибки.
Если выполняются предпосылки, то МНК оценки и являются эффективными линейными несмещенными оценками
Если обозначить:
то что математическое ожидание и дисперсии коэффициентов и будут следующие:
Ковариация коэффициентов:
Если то и распределены тоже нормально:
Отсюда следует, что:
- Вариация β полностью определяется вариацией ε;
- Чем выше дисперсия X - тем лучше оценка β.
Полная дисперсия определяется по формуле:
Дисперсия отклонений в таком виде - несмещенная оценка и называется стандартной ошибкой регрессии. N-2 - может быть интерпретировано как число степеней свободы.
Анализ отклонений
от линии регрессии может
Отношение двух дисперсий распределено по F-распределению, т. е. если проверить на статистическую значимость отличия дисперсии модели от дисперсии остатков, можно сделать вывод о значимости R2.
Проверка гипотезы о равенстве дисперсий этих двух выборок:
Если гипотеза Н0 (о равенстве дисперсий нескольких выборок) верна, t имеет F-распределение с (m1,m2)=(n1-1,n2-1) степенями свободы.
Посчитав F – отношение как отношение двух дисперсий и сравнив его с табличным значением, можно сделать вывод о статистической значимости R2 /2/, /19/.
Заключение
Современные приложения дисперсионного анализа охватывают широкий круг задач экономики, биологии и техники и трактуются обычно в терминах статистической теории выявления систематических различий между результатами непосредственных измерений, выполненных при тех или иных меняющихся условиях.
Благодаря автоматизации
дисперсионного анализа исследователь
может проводить различные
- MS Excel;
- Statistica;
- Stadia;
- SPSS.
В современных статистических программных продуктах реализованы большинство статистических методов. С развитием алгоритмических языков программирования стало возможным создавать дополнительные блоки по обработке статистических данных.
Дисперсионный анализ является мощным современным статистическим методом обработки и анализа экспериментальных данных в психологии, биологии, медицине и других науках. Он очень тесно связан с конкретной методологией планирования и проведения экспериментальных исследований.
Дисперсионный анализ применяется во всех областях научных исследований, где необходимо проанализировать влияние различных факторов на исследуемую переменную.
Список используемых источников
1 Кремер
Н.Ш. Теория вероятности и
2 Гмурман В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 2003.-523с.
3 www.sutd.ru
4 www.conf.mitme.ru
5 www.pedklin.ru
6 www.webcenter.ru
7 www.infections.ru
8 www.encycl.yandex.ru
9 www.infosport.ru
10 www.medtrust.ru
11 www.flax.net.ru
12 www.jdc.org.il
13 www.big.spb.ru
14 www.bizcom.ru
15 Гусев А.Н.
Дисперсионный анализ в
16 www.gpss.ru
17 www.econometrics.exponenta.ru
18 www.optimizer.by.ru
19 www2.econ.msu.ru