Автор работы: Пользователь скрыл имя, 20 Ноября 2011 в 08:29, контрольная работа
Обращаясь к тексту научных статей, многие студенты испытывают если не шок, то уж недоумение обязательно. Действительно: осуществление перехода от изучаемого материала к применяемым знаниям, умения и навыкам – это весьма трудный процесс, который удается далеко не всем!
У1. Распределение Ps(m) для данного уровня иерархии СЭС должно быть одномодальным. Многомодальность свидетельствует о наличии нескольких подсистем, “живущих по своим (разным!) законам” Более подробно вопросы, связанные с многомодальностью Ps(m), будут рассмотрены в следующем параграфе.
У2. Ширина распределения Ps(m) должна иметь “оптимальный” характер. Величина такой “оптимальности” должна быть определена экспериментально - исходя из требований а). устойчивости СЭС и б). комфортности существования людей в таких условиях. В качестве примера такого критерия можно использовать, например, такой: различие в доходах 10% “наиболее бедных” и 10% “наиболее богатых” людей не должно превышать заданную величину (найденную экспериментально или эмпирическим путем). Отметим, что “слишком узкие” распределения Ps(m) свидетельствуют об ухудшенных условиях использования в СЭС (или - государстве) естественной (природно - обусловленной) вариабельности свойств и способностей Человека - это характерно, прежде всего, для тоталитарных государств.
У3. Естественным критерием правильности развития общества выступает требование возрастания m0 (например, рост доходов граждан).
У4. Все более полное, всестороннее вовлечение всех качеств, всех возможностей Человека в социально - экономические процессы (например, вследствие повышение уровня образования) приводит к возрастанию интенсивности шума xt (то есть “возможностях зарабатывать деньги”).
У5. Для устойчивости общества (“уверенности в будущем”) необходимо, чтобы объект социально - экономического процесса данного уровня иерархии мог “за обозримое время” достичь m0 - начав “с нуля” (это - своего рода вариант реализации “американской мечты”). В рамках моделей (А) и (В) это условие можно записать, например, как {(1-a)c}-1 m01-a £ T (при a=1 это условие примет вид c-1ln(m0)£ T), где T - характерное время, численное значение которого зависит от рассматриваемого уровня иерархии (например, для отдельного человека приемлемым значением будет, вероятно, T»3¸5 лет, для малых предприятий - T»5¸7 лет, а для крупных корпораций - T»20¸30 лет).
Совокупность условий У1-У5 является конфликтной в том смысле, что некоторые из них противоречивы (например, условия У3 и У5). Поэтому управление СЭС, осуществляемое с использованием настоящего подхода, представляет собой нетривиальную задачу.
Отметим. что в рамках настоящего подхода можно реализовать также и описание динамических процессов, когда необходимо учитывать P(m,t), - однако такое рассмотрение требует привлечения, как правило, уже значительного объема компьютерного моделирования.
Условия, по которым должно осуществляться управление, допускают математическую формализацию в рамки стандартной задачи на управление. Ниже кратко опишем эту процедуру (в ряде случаев дополнительная детализация проведена с использованием приближения белого шума xt и ht).
. Одномодальность распределений является, как правило, следствием наличия лишь одного стационарного состояния m0 для уравнения (1) (индуцированными шумом переходами в данном случае пренебрегаем, так как потеря устойчивости обществом достигается до их появления, которое предварительно выражается в значительном увеличении ширины распределений). Нетрудно видеть, что для рассмотренных нами моделей (А) и (В) это условие выполнено.
У2. Критерии “устойчивости” или “оптимальности” состояния СЭС, основанные на количественном сравнении “наиболее богатых” с “наиболее бедными” объектами (или подобные им) фактически сводятся к ограничениям на ширину D распределений Ps(x) (автомодельных распределений, т.к. такие критерии формулируются для относительных величин).
А так как D(s02) является монотонной функцией, то такие критерии могут быть формально представлены как
(10)
где s02=opt - такое оптимальное значение относительной интенсивности шума, при котором достигается наилучшее Ps(x). Отметим, что для приближения белого шума критерий (10) может быть записан как min½d½ или min½g½, соответственно - см. Пример.
У3. Требование роста m0=(c/d)1/(b-a) означает следующее: а). если c>d, то a®b. Таким образом, рост m0 может быть осуществлен как “тонкой балансировкой” внутри области ½1-a/b½<<1 (что может быть реализовано, например, “точным регулированием” налоговой политики, которая сказывается на величине b - см. Рис.1), так и ростом с (то есть более полным использованием информационных возможностей Человека), либо - обоими вместе. Уменьшения разности b-a>0 можно достичь либо увеличивая a, либо уменьшая b. Второй “сценарий” означает уменьшение налогового бремени, но обеспечивает только кратковременный успех, ибо инфраструктуры, необходимые для усиления синтеза информации и социализации ее в финансы остаются практически неизменными (к тому же, при a<1 характерное время T при c=const может даже возрастать с уменьшением d).
б). Если c<d, то вследствие a<b имеем ограничение сверху на m0<1, что ввиду рассмотрения нами размерных величин для m0 представляется бессмысленным. Таким образом, случай c<d для рассмотренных нами задач не может иметь место.
Итак, для роста m0 требуется: c>d и a®b, причем главное внимание надо уделять возрастанию как с, так и a (а “налоговое бремя” при этом может быть даже увеличено по абсолютной величине!).
Математически сказанное можно записать следующим образом. Введем пространства
(11)
и
(12)
Отметим, что для белого шума пространство AB определяется с учетом конкретных особенностей моделей (А) и (В):
(13)
Тогда У3 примет вид
(14)
Это условие с учетом сказанного выше можно переписать в виде
(15)
Соотношения (4) - (8) записаны для данного иерархического уровня.
У4. Формализация данного условия требует уже информации о виде и структуре шума xt (или ht). Для белого шума это условие можно записать так:
(16)
где R=[0,¥).
У5. Условие для уменьшения T может быть записано как
(17)
Представленная
задача оптимального управления должна
решаться каждый раз при переводе
СЭС в новое состояние.
Заключение.
На вопрос: а что же следует представлять в качестве результатов исследования социального или экономического объекта в рамках экономической кибернетики, ответ может быть только следующим. В качестве отчета представляется: 1) краткое описание поставленной перед вами задачи, и 2) общие выводы, полученные вами при ее рассмотрении. К отчету – может быть приложен весь представленный выше материал (или же – можно написать в отчете, что этот материал может быть представлен в ответ на специальный запрос со стороны руководства).
Проведенное рассмотрение позволяет сделать следующие выводы:
Список
использованной литературы.