Квантовые Компьютеры

Автор работы: Пользователь скрыл имя, 17 Декабря 2011 в 14:14, реферат

Краткое описание

Квантовый компьютер — вычислительное устройство, работающее на основе квантовой механики. Квантовый компьютер принципиально отличается от классических компьютеров, работающих на основе классической механики. Полномасштабный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьезным развитием квантовой теории в области многих частиц и сложных экспериментов; эта работа лежит на переднем крае современной физики

Содержимое работы - 1 файл

Квантовый компьютер.docx

— 175.12 Кб (Скачать файл)

    Квантовый параллелизм

    Из-за того, что для представления информации используются кубиты, в которых записано сразу оба значения - и 0, и 1, в процессе вычислений происходит параллельная обработка сразу всех возможных вариантов комбинаций битов в процессорном слове. Таким образом, в КК реализуется естественный параллелизм, недоступный классическим компьютерам. Другими словами, существенно, что система «находится одновременно во всех возможных состояниях». Как пишут многие авторы популярных введений в KB, возникает совершенно чудовищный параллелизм вычислении: к примеру, в случае нашей системы из двух кубитов мы как бы оперируем одновременно со всеми возможными ее состояниями: 00, 01, 11, 10.

    Алгоритмы и задачи

      За счет возможности параллельной  работы с большим числом вариантов,  в идеале равным 2N (где N - число кубитов), квантовому компьютеру необходимо гораздо меньше времени для решения определенного класса задач с помощью определенных алгоритмов:

  • Алгоритм Гровера позволяет найти решение уравнения   за время  .
  • Рассмотрим базу данных, содержащую 2N записей. Мы хотим найти ровно одну запись. Имеется некая процедура определения того, нужную запись мы взяли или нет. Записи не упорядочены. С какой скоростью мы можем решить эту задачу на обычном компьютере? В худшем случае нам придется перебрать все 2N записей - это очевидно. Оказывается, что на КК достаточно числа запросов порядка корня из числа записей – 2N/2.
  • Алгоритм Шора позволяет разложить натуральное число на простые множители за полиномиальное от log(n) время.(Применение квантовая криптография.  Для того, например, чтобы получить доступ к кредитной карте, нужно разложить на два простых множителя число длиной в сотни цифр. Даже для самых быстрых современных компьютеров выполнение этой задачи заняло больше бы времени, чем возраст Вселенной, в сотни раз. Благодаря алгоритму Шора эта задача становится вполне осуществимой, если квантовый компьютер будет построен.)
  • Алгоритм Залки - Визнера позволяет моделировать унитарную эволюцию квантовой системы системы частиц за почти линейное время с использованием O(n) кубит.
  • Алгоритм Дойча — Джоза позволяет «за одно вычисление» определить, является ли функция двоичной переменной f(n) постоянной (f1(n) = 0, f2(n) = 1 независимо от n) или «сбалансированной» (f3(0) = 0, f3(1) = 1; f4(0) = 1, f4(1) = 0).
 
 
 

Проблемы построения и работы квантовых компьютеров.

    Пытаясь осуществить свой замысел, ученые упираются в проблему сохранения когерентности волновых функций кубитов, так как потеря когерентности хотя бы одним из кубитов разрушила бы интерференционную картину. В настоящее время основные усилия экспериментальных рабочих групп направлены на увеличение отношения времени сохранения когерентности ко времени, затрачиваемому на одну операцию (это отношение определяет число операций, которые можно успеть провести над кубитами). Главной причиной потери когерентности является связь состояний, используемых для кубитов, со степенями свободы, не участвующими в вычислениях. Например, при передаче энергии электрона в возбужденном атоме в поступательное движение всего атома. Мешает и взаимодействие с окружающей средой, например, с соседними атомами материала компьютера или магнитным полем Земли, но это не такая важная проблема. Вообще, любое воздействие на когерентную квантовую систему, которое принципиально позволяет получить информацию о каких-либо кубитах системы, разрушает их когерентность. Потеря когерентности может произойти и без обмена энергией с окружающей средой.

    Воздействием, нарушающим когерентность, в частности, является и проверка когерентности. При коррекции ошибок возникает своего рода замкнутый круг: для того чтобы обнаружить потерю когерентности, нужно получить информацию о кубитах, а это, в свою очередь, также нарушает когерентность. В качестве выхода предложено много специальных методов коррекции, представляющих также и большой теоретический интерес. Все они построены на избыточном кодировании.

    Что касается технической стороны появляются сообщения, что создаются реальные квантовые системы с небольшим числом битов - с десятью, скажем. Экспериментальные, в железе, так сказать.

    Так что эксперименты есть, но пока очень  далекие от реальности. Десять бит - это и для классического и для квантового компьютера слишком мало! Чтобы моделировать молекулу белка, нужно порядка ста тысяч кубитов. Для Алгоритма Шора , чтобы вскрывать шифры, достаточно примерно тысячи кубитов.

Если  в области передачи информации уже созданы реально работающие системы и до коммерческих продуктов осталось лишь несколько шагов, то коммерческая реализация квантового когерентного процессора - дело будущего. К настоящему времени КК научился вычислять сумму 1+1! Это большое достижение, если учесть, что в виде результата он выдает именно 2, а не 3 и не 0. Кроме того, не следует забывать, что и первые обычные компьютеры были не особенно мощны.

    Физической  системе, реализующей квантовый  компьютер, можно предъявить пять требований:

  1. Система должна состоять из точно известного числа частиц.
  2. Должна быть возможность привести систему в точно известное начальное состояние.
  3. Степень изоляции от внешней среды должна быть очень высока.
  4. Надо уметь менять состояние системы согласно заданной последовательности унитарных преобразований ее фазового пространства.
  5. Необходимо иметь возможность выполнять «сильные измерения» состояния системы (то есть такие, которые переводят ее в одно из чистых состояний).

    Из  этих пяти задач наиболее трудными считаются третья и четвертая. От того, насколько точно они решаются, зависит точность выполнения операций. Пятая задача тоже весьма неприятна, так как измерить состояние отдельной  частицы нелегко. 

  

Области применения.

1)Моделирование  различных систем(Биологических, квантовых и тд.)

2)Квантовая криптография.

    Можно ожидать распространения через не очень долгое время квантовых криптографических систем. Что касается квантовой передачи данных, к настоящему времени экспериментально реализованы системы обмена секретной информацией по незащищенному от несанкционированного доступа каналу. Они основаны на фундаментальном постулате квантовой механики о невозможности измерения состояния без оказания влияния на него. Подслушивающий всегда изменяет состояние кубитов, которые он подслушал, и это может быть зафиксировано связывающимися сторонами. Данная система защиты информации абсолютно надежна, так как способов обойти законы квантовой механики пока еще никто не выдумал. Подобные системы, которые уже реализованы, используют световод. Универсальный КК здесь не нужен. Нужно специализированное квантовое устройство, способное выполнять только небольшой набор операций, - своего рода квантовый кодек. Благодаря огромной скорости разложения на простые множители, квантовый компьютер позволит расшифровывать сообщения, зашифрованные при помощи популярного асимметричного криптографического алгоритма RSA. До сих пор этот алгоритм считается сравнительно надёжным, так как эффективный способ разложения чисел на простые множители для классического компьютера в настоящее время неизвестен.

    Применение  идей квантовой механики уже открыли  новую эпоху в области криптографии, так как методы квантовой криптографии открывают новые возможности в области передачи сообщений. 
 
 
 
 
 
 
 
 
 
 

Физические  реализации квантовых  компьютеров.

Построение квантового компьютера в виде реального физического  прибора является фундаментальной  задачей физики 21 века. В настоящее  время построены только ограниченные его варианты (в пределах 10 кубит). Вопрос о том, до какой степени возможно масштабирование такого устройства, является предметом новой интенсивно развивающейся области - многочастичной квантовой механики. Центральным здесь является вопрос о природе декогерентности (точнее, о коллапсе волновой функции), который пока остается открытым.

История

На рубеже 21 века во многих научных лабораториях были созданы однокубитные квантовые процессоры (по существу, управляемые двухуровневые системы, о которых можно было предполагать возможность масштабирования на много кубитов). Очень скоро был реализован жидкостной ЯМР - квантовый компьютер (до 7 кубит, IBM, И.Чанг). В 2005 году группой Ю.Пашкина (NEC, Япония) был построен двухкубитый квантовый процессор на сверхпроводящих элементах. Примерно в это время до десятка кубит было сделано на ионах в ловушках Пауля (Д.Винланд, П.Золлер, Р.Блатт).

В России разработкой  вопросов физической реализации квантового компьютера занимается ряд исследовательских  групп, ядро которых составляет школа  академика К.А.Валиева: Физико-технологический  институт РАН (лаборатория ФКК), МГУ (ф-т ВМК, кафедра КИ, физический ф-т, кафедра КЭ), МФТИ, МИФИ, МИЭТ, КГУ, ЯрГУ, а также ряд сотрудников институтов РАН (ИТФ, ИФТТ и др.) и Вузов.

Главные технологии для квантового компьютера:

1) Твердотельные  квантовые точки на полупроводниках:  в качестве логических кубитов используются либо зарядовые состояния (нахождение или отсутствие электрона в определенной точке) либо направление электронного и/или ядерного спина в данной квантовой точке. Управление через внешние потенциалы или лазерным импульсом.

2) Сверхпроводящие  элементы (джозефсоновские переходы, сквиды и др.). В качестве логических кубитов используются присутствие/отсутствие куперовской пары в определенной пространственной области. Управление: внешний потенциал/магнитный поток.

3) Ионы в вакуумных  ловушках Пауля (или атомы в оптических ловушках). В качестве логических кубитов используются основное/возбужденное состояния внешнего электрона в ионе. Управление: классические лазерные импульсы вдоль оси ловушки или направленные на индивидуальные ионы + колебательные моды ионного ансамбля.

4) Смешанные  технологии: использование заранее  приготовленных запутанных состояний  фотонов для управления атомными  ансамблями или для как элементы управления классическими вычислительными сетями.

В ноябре 2009 года физикам из Национального института стандартов и технологий в США впервые удалось собрать программируемый квантовый компьютер, состоящий из двух кубит 

    Вместо  заключения…

    Пока  квантовым компьютерам по плечу  только наиболее простые задачи - например, они уже умеют складывать 1 и 1, получая в результате 2. Было также запланировано взятие другого важного рубежа - факторизации числа 15, его предстоит разложить на простые множители - 3 и 5. А там, глядишь, дойдет дело и до более серьезных задач.

    Опытные образцы сейчас содержат менее десяти квантовых битов. По мнению Нейла Гершенфельда (Nell Gershenfeld), участвовавшего в создании одной из первых действующих моделей квантового компьютера, необходимо объединить не менее 50-100 кубитов, чтобы решать полезные с практической точки зрения задачи. Интересно, что добавление каждого следующего кубита в квантовый компьютер на эффекте объемного спинового резонанса требует увеличения чувствительности аппаратуры в два раза. Десять дополнительных кубитов, таким образом, потребуют увеличения чувствительности в 1000 раз, или на 60 дБ. Двадцать - в миллион раз, или на 120 дБ...

    He исключено, что в информационном обществе появление квантового компьютера сыграет ту же роль, что в свое время, в индустриальном, - изобретение атомной бомбы. Действительно, если последняя является средством «уничтожения материи», то первый может стать средством «уничтожения информации» - ведь очень часто то, что известно всем, не нужно никому. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Приложение

Уравне́ние Шрёдингера — уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, вгамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике. Его можно назвать уравнением движения квантовой частицы. Установлено Эрвином Шрёдингером в 1926 году.

Информация о работе Квантовые Компьютеры