Автор работы: Пользователь скрыл имя, 22 Октября 2012 в 10:08, реферат
Мысленный эксперимент как метод научного познания заключается в получении нового или проверке имеющегося знания путем создания объектов и управления ими в искусственно задаваемых ситуациях.
Введение...................................................................................................................3
Глава 1. Роль и значение мысленного эксперимента в физике...........................6
Глава 2. Мысленный эксперимент в классической физике...............................12
Глава 3. Мысленный эксперимент в Теории Относительности........................30
Заключение.............................................................................................................45
Список использованной литературы...................................................................47
Второй довод Птолемея вызывает у Галилея большие трудности. Здесь он предлагает объяснение, не являющееся ни полностью правильным, ни исчерпывающим. Галилей говорит, что тела на Земле удерживаются тяготением. Галилей называет это свойство тел тяжестью. По мнению Галилея, то, что тела не срываются с поверхности Земли, обусловлено фактом, что любое тело отлетает по касательной к окружности вращения: «Таким образом, если бы камень, отброшенный вращающимся с огромной скоростью колесом, имел такую же естественную склонность двигаться к центру этого колеса, с какой он движется к центру Земли, то ему нетрудно было бы вернуться к колесу или, скорее, вовсе не удаляться от него, ибо раз в начале отрыва удаление столь ничтожно из-за бесконечной остроты угла касания, малейшего уклонения по направлению к центру колеса было бы достаточно, чтобы удержать его на окружности» [Цит. по 6, с.181].
Итак, в процессе защиты коперниканства Галилей оказался вовлеченным в построение новой науки о движении. Ведь чтобы опровергнуть возражения против движения Земли, ему было необходимо создать, по крайней мере, интуитивно, новую механику, с помощью которой можно было бы проанализировать следствия, вытекающие из наличия такого движения. Галилей не создал цельной системы; может быть, он к этому и не стремился17.
Галилео Галилей пытался познать суть свободного падения. Он всегда был уверен, что скорость падения тел на Землю не зависит от их массы. Галилею требовалось узнать, что же произойдет, если вообще убрать сопротивление среды.
Галилей понимает, что полностью сопротивление среды убрать невозможно, поэтому «я придумал, - пишет Галилей, - заставлять тело двигаться по наклонной плоскости, поставленной под небольшим углом к горизонту; при таком движении совершенно так же, как и при отвесном падении, должна обнаружиться разница, происходящая от веса.
Идя далее, я
захотел освободиться от того сопротивления,
которое обусловливается
Понятно, что Галилей не мог достичь такого идеального результата с реальным эксперимента, но он допустил, что поскольку среду полностью устранить невозможно, тяжелый шарик движется согласованно с легким. Галилей подразумевает, что для науки совсем необязательным является достижение идеала на опыте — достаточно к нему приблизиться как можно ближе. Нарисовав впечатляющую картину мысленного эксперимента, Галилей не проводит его, а лишь подробно рассказывает, как его можно провести.
Следующий эксперимент, подтверждающий тезис Галилея представлен в его работе «Диалоги18». Он гласит: представим пушечное ядро и мушкетную пулю. Если считать, что тяжёлые тела падают быстрее лёгких, то ядро должно падать с большей скоростью, а мушкетная пуля с меньшей. Если мы соединим их вместе перемычкой, то более тяжелое должно ускорять менее тяжелое, и менее тяжелое должно замедлять более тяжелое. Мы получим, что у нового тела скорость - среднее арифметическое двух изначальных. Таким образом, новое тело, по массе большее его составных частей будет падать с меньшей скоростью, чем его составная часть. Отсюда обнаруживается противоречие, из которого можно сделать вывод, что все тела падают с одинаковой скоростью.
В продолжение
дискуссии Второго дня Галилей
критикует представление Аристо
Что касается пустоты Сальвиати в «Диалогах» говорит, что есть нечто связующее мельчайшие частицы вещества, наподобие клея. Сальвиати продолжает, что у природы есть «боязнь пустоты», которую легко проверить на опыте: «Если мы возьмем цилиндр воды и обнаружим в нем сопротивление его частиц разделению, то оно не может происходить от иной причины, кроме стремления не допустить образования пустоты».
В "Беседах19" обсуждается вопрос о пустотах, держащих связанными частицы металла. В пример приводятся рассуждения Сагредо о муравьях, способных вытащить корабль, нагруженный зерном на берег. «Если сопротивление не бесконечно велико, то оно может быть преодолено множеством весьма малых сил, так что большое количество муравьев могло бы вытащить на землю судно, нагруженное зерном. В самом деле, мы ежедневно наблюдаем, как муравей тащит зерно, а так как зерен в судне ограниченное число, то, увеличив это число даже в четыре или в шесть раз, мы все же найдем, что соответственно большое количество муравьев, принявшихся за работу, может вытащить на землю и зерно, и корабль. Мне кажется, что именно так обстоит дело и с пустотами, держащими связанными частицы металла» [Цит. по 6, с.183].
Приведенный пример - специальная формулировка аксиомы непрерывности Архимеда20, которая устанавливает, какого рода величины могут находиться между собой в отношении и что это значит - находиться в отношении. Эту формулировку хочет опровергнуть Галилей своим доказательством о том, что конечная величина может представлять собой сумму бесконечного числа. Галилей обращается к "колесу Аристотеля». В средневековой механике эта задача выглядит так: почему при совместном движении двух кругов больший проходит такое же расстояние, как и меньший, в то время как при независимом движении этих двух кругов пройденные ими расстояния относились бы как их радиусы.
Для решения этой задачи Галилей вводит допущение. Он рассматривает сначала движение равносторонних и равноугольных многоугольников. При движении большего многоугольника должен двигаться также и вписанный в него меньший. При этом меньший многоугольник пройдет пространство почти равное пройденному большим. При движение меньшего многоугольника, как показывает Галилей, происходят "скачки", число которых будет равно числу сторон обоих многоугольников. При возрастании числа сторон многоугольников размеры скачков пропорционально уменьшаются. Заметим, что число сторон многоугольника и «скачки» являются конечным числом.
Но при рассмотрении случая,
когда многоугольник
Такое допущение
не принималось математиками ни в
античности, ни в средние века, оно
дозволялось только в логистике
для упрощения расчетов, которые
всегда принимались как
Для ученых Средневековья было чрезвычайно характерно понимание различия между тем, что мы наблюдаем в действительности, и тем, как мы говорим о том, что наблюдаем. В связи с этим существовало два подхода к понятию скорости. С одной стороны, скорость можно было рассматривать как расстояние, проходимое в единицу времени. С другой стороны, скорость могла рассматриваться в контексте теории качеств как интенсивность движения. Галилей был первым, кому пришла в голову мысль объединить эти два подхода.
С помощью противоречивого понятия "неделимого", или "бесконечно малого", Галилей вводит важное понятие в механике - "мгновенная скорость".
При обсуждении
вопроса о бесконечной
Галилей указывает на то, что высота существенно влияет на изменение действия силы падающего тела на Землю. В пример приводит падающий груз на сваю с разных высот, то есть с высоты четырех локтей груз вгонит сваю на четыре дюйма. При падении груза с высоты двух локтей он вгонит ее в землю меньше и, конечно, еще меньше при падении с высоты одного локтя, одной пяди. Галилей делает вывод, что если величина силы зависит прямо пропорционально от скорости, то движение и скорость очень малы при незаметном совершении удара.
Галилей и Коперник
разрушили аристотелевскую
В первой половине XVII века самыми главными и крупнейшими учеными были Рене Декарт и Христиан Гюйгенс. Декарт всегда пытался постигнуть суть мироздания. Он критиковал Галилея, пытавшегося решать только частные проблемы, утверждал, что Галилей строил дом без фундамента. Главной идеей с точки зрения Декарта было понять мир в целом, описать его одним законом (законами).
Проблема мысленного эксперимента в это время и его статуса неоднократно становилась темой дискуссий. Гюйгенс постоянно критиковал Декарта за созданные им мысленные эксперименты (два из которых мы приведем далее). Гюйгенс их отождествлял с теорией и не считал их достаточным для построения физики как науки о природе. На реальном, а не мысленном только эксперименте настаивал Ньютон в своей «Оптике».
В «Диоптрике» Декарт применил новую модель преломления и отражения света, основанную мысленном эксперименте. Декарт моделирует свет с помощью теннисного мяча, падающего на плоскую поверхность. Сначала он выводит закон отражения и для этого представляет, что мяч падает на поверхность СЕ, которая мыслится идеально твердой и неподвижной. Предположим, говорит Декарт, что теннисный мяч, посланный ракеткой в точке А, двигается равномерно по линии АВ и подает на поверхность СЕ в точке В. Разложим его стремление на две составляющие — АС, которая перпендикулярна поверхности, и АН, ей параллельную. Так как мяч, ударившись о поверхность СЕ, не сообщит ей никакого движения, скорость его после отскока не изменится по величине, и он по прошествии времени, равному тому, которое ему потребовалось для прохождения отрезка АВ, окажется где-то на окружности, описанной радиусом АВ вокруг точки В. После отскока составляющая стремления АН, параллельная поверхности СЕ, останется без изменений (АН=НР), а вертикальная составляющая АС изменит свой знак на противоположный. Итак, горизонтальная составляющая определит прямую РЕ, находящуюся от вертикали НВ на расстоянии НР. Ясно, что по прошествии нужного времени мяч должен будет находиться на пересечении этой прямой с окружностью, т. е. в точке Р. Отсюда с необходимостью следует, что угол падения АВН равен углу отражение НВР.
В качестве еще одного интересного мысленного эксперимента можно представить эксперимент о доказательстве в круговом движении прямолинейного. Декарт утверждает, что путь тела представляется криволинейной траекторией, «тем не менее, каждая из частиц тела по отдельности стремится продолжать свое движение по прямой линии». Далее Декарт поясняет: «Заставьте, например, колесо вращаться вокруг своей оси: все его части будут двигаться тогда по кругу, так как, будучи соединены друг с другом, они не могут перемещаться иначе; однако склонны они передвигаться не по кругу, а по прямой. Это ясно видно, когда одна из частиц его оторвется от других. Как только она очутится на свободе, движение ее перестает быть круговым и продолжается по прямой линии» [формулировка экспериментов – 6, с.233-235].
Таким образом, мысленные эксперименты Галилео Галилея и Рене Декарта, позволили построить первую физическую теорию – классическую механику и теоретически доказать ряд законов, которые до этого носили эмпирический характер.
Глава 3
МЫСЛЕННЫЙ ЭКСПЕРИМЕНТ В ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
Расхождение теории с конкретно поставленным экспериментом приводит либо к совершенствованию существующей теории, либо к созданию принципиально новой теории, дающей новые законы и более глубокое понимание физической реальности [5, с.189].
Информация о работе Мысленный эксперимент как метод научного познания