Автор работы: Пользователь скрыл имя, 13 Июня 2012 в 16:24, контрольная работа
Классификация систем и понятие активного объекта. Определения основных терминов
С целью постановки проблемы данной лекции рассмотрим классификацию систем, определим понятие активного объекта (системы), дадим авторскую интерпретацию основных терминов, используемых в работе.
Основные понятия теории систем
Рассмотрим понятие "система", обращая основное внимание на особенности применения этого фундаментального понятия в теории и практике синтеза рефлексивных автоматизированных систем управления (РАСУ) активными объектами (системами).
Прежде всего система – это целостная совокупность некоторых элементов, не сводящаяся к простой сумме своих частей, т.е. представляющая собой нечто большее, чем просто сумму частей. Это нечто, отсутствующее в частях системы, взятых самих по себе, и совершенно необходимое, чтобы элементы образовали систему, представляет собой интегрирующее начало, системообразующий фактор.
ПРОБЛЕМА УПРАВЛЕНИЯ АКТИВНЫМИ ОБЪЕКТАМИ
Вопрос 1. Классификация систем и понятие активного объекта. Определения основных терминов
С целью постановки проблемы данной лекции рассмотрим классификацию систем, определим понятие активного объекта (системы), дадим авторскую интерпретацию основных терминов, используемых в работе.
Основные понятия теории систем
Рассмотрим понятие "система", обращая основное внимание на особенности применения этого фундаментального понятия в теории и практике синтеза рефлексивных автоматизированных систем управления (РАСУ) активными объектами (системами).
Прежде всего система – это целостная совокупность некоторых элементов, не сводящаяся к простой сумме своих частей, т.е. представляющая собой нечто большее, чем просто сумму частей. Это нечто, отсутствующее в частях системы, взятых самих по себе, и совершенно необходимое, чтобы элементы образовали систему, представляет собой интегрирующее начало, системообразующий фактор. Интегрирующее начало может быть как объективным, так и субъективным, а системы, соответственно, естественными и искусственными. Искусственная система есть средство достижения цели. Но и естественные, например, экологические системы, человек часто рассматривает с прагматической точки зрения, т.е. с точки зрения того, что они могут ему дать или какими они должны быть, чтобы обеспечить человеку определенные желательные условия, т.е. опять же с точки зрения соответствия определенным субъективным целям.
Различные модели систем отличаются тем, насколько полно в этих моделях отражены знания разработчиков модели о внутреннем строении моделируемых систем, и насколько эти модели являются подходящими для применения с точки зрения достижения целей АСУ.
Простейшей (полностью феноменологической) моделью системы является модель "черного ящика" [234]. Так называют систему, о которой внешнему наблюдателю доступны только лишь входные и выходные параметры, а внутренняя структура системы и процессы в ней неизвестны. Входные параметры можно рассматривать как управляющие воздействия, а желательные значения выходных – как цель управления. Ряд важных выводов о поведении системы можно сделать, наблюдая только ее реакцию на воздействия, т.е. наблюдая зависимости между изменениями входных и выходных параметров. Такой подход открывает возможности изучения систем, устройство которых либо совершенно неизвестно, либо слишком сложно для того, чтобы можно было по свойствам составных частей и связям между ними сделать выводы о поведении системы в целом. Поэтому понятие "черный ящик" широко применяется при решении задач идентификации и моделировании реакции на управляющее воздействие в АСУ сложными объектами управления.
Важно понимать, что "черный ящик" представляет собой именно систему, причем в общем случае, сложную систему. Из этого следует очень важный вывод: оптимизировать какой–либо отдельно взятый выходной параметр нельзя, так как это может привести к уничтожению всей системы, т.е. выходные параметры необходимо рассматривать системно, т.е. в единстве, комплексе.
Несмотря на свою кажущуюся простоту, построение модели "черного ящика" не является тривиальной задачей. Дело в том, что любая реальная система взаимодействует со средой бесчисленным множеством способов. Строя модель системы, из этого бесчисленного множества связей отбирают конечное их число и включают их в список входов и выходов. Критерием отбора при этом является целевое назначение модели, существенность той или иной связи для достижения цели. То, что существенно и важно, включается в модель, а то, что не существенно и не важно – не включается.
Но проблема как раз и заключается в том, что в действительности заранее никому не может быть точно известно, какие входные параметры оказывают существенное влияние на выходные целевые параметры, а какие нет. Это можно узнать, статистически исследовав эволюцию некоторого объекта в течение длительного времени, что проблематично, либо изучив достаточное количество аналогичных объектов, находящихся на различных стадиях своей эволюции, т.е. вариабельных конкретных "мгновенных" реализаций аналогичных объектов управления.
Но даже если такая информация имеется, то математически ее обработать, например с применением факторного анализа, также далеко не просто, так как обычно размерность реальных задач намного (на несколько порядков) превосходит возможности стандартных статистических методов и пакетов.
Более развитой, чем "черный ящик" является модель состава системы, в которой перечисляются составляющие ее элементы и подсистемы. Совокупность необходимых и достаточных для достижения целей управления элементов и подсистем с определенными отношениями между ними называется структурой системы.
Суммируя модели "черного ящика", состава и структуры, можно дать следующее синтетическое определение системы: "Система есть совокупность взаимосвязанных элементов, обособленная от среды и взаимодействующая с ней как единое целое для достижения определенной объективной или субъективной цели" [234].
Существуют различные подходы к классификации систем:
– по происхождению: искусственные, смешанные и естественные;
– по степени изученности структуры (наличию информации): "черный ящик", "серый ящик (непараметризованный и параметризованный классы), "белый ящик";
– по способу управления: управляемые извне, самоуправляемые, с комбинированным управлением;
– по ресурсной обеспеченности управления: энергетические ресурсы (обычные и энергокритичные), материальные ресурсы (малые и большие), информационные ресурсы (простые и сложные).
При недостатке априорной информации об объекте управления построение его содержательной модели затруднительно. В этих условиях, возможно применить модель "черного ящика", которая предполагает минимум знаний о структуре и связях входных и выходных параметров моделируемого объекта.
При построении этой модели выходные параметры определяются исходя из целей управления, а проблема выбора входных параметров, значимо влияющих на выходные, в принципе может решаться различными методами, например, такими как: многофакторный анализ, дискриминантный анализ, методы проверки статистических гипотез, методы теории информации.
В данной работе предлагаются различные варианты классификации параметров, в зависимости от того, какие состояния объекта управления и среды они характеризуют и в какой степени они зависят от человека.
Более пристального внимания заслуживает также классификация систем по ресурсной обеспеченности управления. Для того, чтобы модель реально заработала, или, как говорят была актуализирована, необходимы затраты различных ресурсов, прежде всего энергетических, материальных, информационных, финансовых, а также других.
Конечно, ресурсная обеспеченность меняется с течением времени, что связано прежде всего с совершенствованием компьютерной техники и информационных систем, а также зависит от возможностей организаций и конкретных исследователей и разработчиков. Поэтому классификация этого типа, безусловно, является относительной.
Большой называется система, поведение которой определяется всей совокупностью ее элементов, взаимодействующих между собой, ни один из которых не является определяющим [234]. В рассматриваемом контексте термин "большая" означает не пространственные размеры системы, а большое количество ее элементов. При моделировании больших систем возникает проблема высокой размерности описания. Например, если применяется многофакторная модель, то вычислительные и понятийные (связанные с интерпретацией) трудности возникают уже при количестве факторов от семи до десяти. В то же время многие реальные задачи требуют учета многих сотен и даже тысяч различных факторов. На практике чаще всего исследователь самостоятельно решает неформализованным путем, какие факторы исследовать, а какие нет.
Сложной называется система, адекватное моделирование которой требует учета отсутствующей или недоступной на момент моделирования информации [234]. Если управление приводит к неожиданным, непредвиденным или нежелательным результатам, т.е. отличающимся от ожидаемых (прогнозируемых) в соответствии с моделью, то это объясняется недостатком существенной информации, что порождает неадекватность модели.
Таким образом, простота или сложность системы относительна и указывает на достаточность или недостаточность информации о системе в действующей модели этой системы, т.е. связана с возможностью построения адекватной модели.
Определения базовых понятий, используемых в работе
Предметная область (ПО) представляет собой систему, включающую: активный объект управления, управляющую систему и окружающую среду (рисунок 1.1).
Активными будем называть системы, имеющие собственную систему целеполагания и принятия решений, а также адаптивную модель самого себя (рефлексивность) и окружающей среды, включая модели систем управления различного уровня и назначения, которые воздействуют на активную систему (АС) как на активный объект управления (АОУ). В работе термины "активная система" и "активный объект" рассматриваются как синонимы.
|
Рисунок 1.1. Структура предметной области и рефлексивной АСУ активными объектами |
Сложная система – это система, которая не может быть отображена в формальной модели по причине дефицита информации о ней.
Рефлексивная система – это система, имеющая собственную адаптивную модель себя и окружающей среды.
Из сопоставления этих определений следует, что активные системы являются одновременно сложными рефлексивными системами.
Активный объект управления (АОУ) – активная система, являющаяся объектом управления.
Классификация факторов:
– активный объект управления описывается факторами, характеризующими его текущее и прошлые состояния;
– управляющая система характеризуется технологическими факторами, с помощью которых она оказывает управляющее воздействие на активный объект управления;
– окружающая среда характеризуется прошлыми, текущими и прогнозируемыми факторами, которые также оказывают воздействие на активный объект управления.
Управляющие факторы – это факторы, оказывающие влияние на объект управления, которыми может воздействовать управляющая система. Факторы окружающей среды – это факторы, оказывающие влияние на объект управления, и действие которых не зависит от управляющей системы. Необходимо отметить, что факторы всех этих категорий в математической модели рассматриваются единообразно, что не исключает возможности изучения влияния на результаты управления отдельных различных групп или единичных факторов.
Модель активного объекта управления учитывает два уровня: информационный и поддержки. На информационном уровне локализуются функции целеполагания, синтеза и адаптации модели окружающей среды АОУ (включая управляющую систему), принятия и реализации решений. Уровень поддержки представляет собой систему, обеспечивающую функционирование информационного уровня (рисунок 1.1)
Классификация состояний АОУ. Активный объект управления характеризуется будущими состояниями, которые классифицируются как целевые и нежелательные. Причем эта классификация в общем случае различная у самого активного объекту управления и управляющей системы (они могут полностью не совпадать, а также частично или полностью совпадать).
Адаптация модели ПО – количественное изменение параметров модели, уточнение обобщенных образов классов и семантических портретов факторов.
Синтез модели ПО – формирование или качественное изменение параметров модели: формирование образов новых классов и/или учет влияния новых факторов. Формальная модель ПО представляет собой математическую модель, численный метод, структуры баз данных, алгоритмы их обработки, обеспечивающие отображение в количественной форме структуры ПО, а также изучение причинно-следственных взаимосвязей между факторами и будущими состояниями АОУ.
Системно-когнитивный анализ (СК-анализ) – это системный анализ, как метод познания, структурированный до уровня базовых когнитивных операций.
Автоматизированный системно-когнитивный анализ (АСК-анализ) (Automated system cognitive analysis) – это системно-когнитивный анализ в котором базовые когнитивные операции автоматизированы.
Вопрос 2. Двухуровневая модель активной системы и рефлексивное мета-управление
По-видимому, понятие активной системы впервые предложено отечественными учеными В.В. Дружининым и Д.С. Конторовым в 1976] [71]. В дальнейшем большой вклад в развитие теории активных систем внесли Бурков В.Н., Новиков Д.А., Черкашин А.М. [32].
Определение активной системы: активные системы – это системы с целеполаганием и активной свободной волей, поведение которых основано на накоплении информации о себе и окружающей среде, ее анализе, прогнозе собственного состояния и состояния окружающей среды, на принятии и реализации решений.
Примерами активных систем являются люди, коллективы (предприятия), социально-экономические системы различных уровней и масштабов: от коллективов и предприятий, до территориально-распределенных межотраслевых комплексов, а также биологические и экологические системы, некоторые интеллектуальные кибернетические системы и многие другие.
Соотношение содержания понятий "сложная система" и "активная система": из определения активной системы следует, что функции, характерные для активных систем, могут реализоваться только за счет сложной системы их поддержки.
Отсюда следует еще одно определение активных систем: активные системы – это сложные системы с целесообразным поведением.
Это определение является "классическим" в том смысле, что дано через подведение под более общее понятие ("сложная система") и выделение специфического признака ("целесообразное поведение").