Биохимия печени

Автор работы: Пользователь скрыл имя, 09 Января 2012 в 20:47, курсовая работа

Краткое описание

Целью курсовой работы является рассмотрение функций печени и сравнение биохимических показателей работы этого органа в норме и патологии; также указание основных принципов лабораторной диагностики, краткое описание синдромов гепатитов различной этиологии и приведение примеров.

Содержание работы

Введение 3
1. Функциональная биохимия печени 4
1.1 Регуляторно–гомеостатическая функция печени 4
1.1.1 Углеводный обмен в печени и его регуляция 4
1.1.2 Регуляция липидного обмена 7
1.1.3 Регуляция обмена белков 11
1.1.4Участие печени в обмене витаминов 13
1.1.5 Участие печени в водно-минеральном обмене 16
1.1.6 Участие печени в пигментном обмене 17
1.2 Мочевинообразовательная функция 19
1.3 Желчеобразовательная и экскреторная функция 22
2. Заболевания печени и лабораторная диагностика заболеваний печени 26
2.1 Основы клинической лабораторной диагностики заболеваний печени 26
2.2 Основные клинико-лабораторные синдромы при поражениях печени 28
2.2.1 Синдром гепатодепрессии (малой недостаточности печени) 28
2.2.2 Синдром воспаления 30
2.2.3 Синдром регенерации и опухлевого роста печени 31
Заключение 32
Список литературы 33

Содержимое работы - 1 файл

Биохимия печени.docx

— 343.02 Кб (Скачать файл)

1.1.6 Участие печени в пигментном обмене

     Участие печени в обмене пигментов проявляется  в превращении хромопротеидов до билирубина в клетках РЭС, имеющихся в печени, конъюгации билирубина в самих печеночных клетках и разложении в них всасывающегося из кишечника уробилиногена до непигментных продуктов.

     Гемохромогенные пигменты, образуются в организме  при распаде гемоглобина (в значительно  меньшей степени при распаде  миоглобина, цитохромов и др.).

     Начальным этапом распада гемоглобина (в клетках  макрофагов, в частности в звездчатых ретикулоэндотелиоцитах, а также  в гистиоцитах соединительной ткани  любого органа) является разрыв одного метинового мостика с образованием вердоглобина. В дальнейшем от молекулы вердоглобина отщепляются атом железа и белок глобин. В результате образуется биливердин, который представляет собой  цепочку из четырех пиррольных колец, связанных метановыми мостиками. Затем  биливердин, восстанавливаясь, превращается в билирубин – пигмент, выделяемый с желчью и поэтому называемый желчным пигментом. Образовавшийся билирубин называется непрямым (неконъюгированным) билирубином. Он нерастворим в воде, дает непрямую реакцию с диазореактивом, т.е. реакция протекает только после  предварительной обработки спиртом. В печени билирубин соединяется (конъюгирует) с глюкуроновой кислотой. Эта реакция катализируется ферментом  УДФ-глюкуронилтрансферазой, при этом глюкуроновая кислота вступает в  реакцию в активной форме, т.е. в  виде УДФГК. Образующийся глюкуронид билирубина получил название прямого билирубина (конъюгированный билирубин). Он растворим  в воде и дает прямую реакцию с  диазореактивом. Большая часть билирубина соединяется с двумя молекулами глюкуроновой кислоты, образуя диглюкуронид билирубина. Образовавшийся в печени прямой билирубин вместе с очень небольшой частью непрямого билирубина выводится с желчью в тонкую кишку. Здесь от прямого билирубина отщепляется глюкуроновая кислота и происходит его восстановление с последовательным образованием мезобилирубина и мезобилиногена (уробилиногена). Из тонкой кишки часть образовавшегося мезобилиногена (уробилиногена) резорбируется через кишечную стенку, попадает в воротную вену и током крови переносится в печень, где расщепляется полностью до ди- и трипирролов. Таким образом, в норме в общий круг кровообращения и мочу мезобилиноген не попадает. Основное количество мезобилиногена из тонкой кишки поступает в толстую и здесь восстанавливается до стеркобилиногена при участии анаэробной микрофлоры. Образовавшийся стеркобилиноген в нижних отделах толстой кишки (в основном в прямой кишке) окисляется до стеркобилина и выделяется с калом. Лишь небольшая часть стеркобилиногена всасывается в систему нижней полой вены (попадает сначала в геморроидальные вены) и в дальнейшем выводится с мочой .

1.2 Мочевинообразовательная функция

 

     Печень  — единственный орган, имеющий все  ферменты цикла образования мочевины из аммиака. Аммиак, образующийся в  других тканях, в печени превращается в индифферентный продукт— мочевину, которая выделяется в кровь. При  интенсивном катаболизме белков и небелковых азотистых соединений (аминокислот, пуринов, пиримидинов, биогенных  аминов) повышено образование мочевины в печени, ее содержание в крови  и выделение с мочой.

     Биосинтез мочевины (орнитиновый цикл мочевинообразования) является основным механизмом обезвреживания аммиака в организме. На долю мочевины приходится до 80–85% от всего азота мочи. Впервые Г. Кребс и К. Гензеляйт в 1932 г. вывели уравнения реакций синтеза мочевины, которые представлены в виде цикла, получившего в литературе название орнитинового цикла мочевинообразования Кребса.

     Весь  цикл мочевинообразования может  быть представлен следующим образом. На первом этапе синтезируется макроэргическое  соединение карбамоилфосфат – метаболически  активная форма аммиака, используемая в качестве исходного продукта для синтеза пиримидиновых нуклеотидов (соответственно ДНК и РНК) и аргинина (соответственно белка и мочевины): 

       

     Существуют  два разных пути синтеза карбамоилфосфата в клетках печени, катализируемые разными ферментами. Первую необратимую  реакцию катализирует регуляторный фермент – аммиакзависимая карбамоилфосфатсинтетаза: 

       

     Реакция требует затраты двух молекул  АТФ, проходит в митохондриях клеток печени и используется преимущественно  для синтеза аргинина и мочевины. В этой реакции в качестве активного  стимулирующего аллостерического эффектора  действует N-ацетилглутамат. Вторую, также  необратимую, реакцию катализирует глутаминзависимая карбамоилфосфатсинтетаза: 

       

     Данная  реакция открыта в цитозоле клеток печени и требует наличия ионов Mg2+.

     На  втором этапе цикла мочевинообразования  происходит конденсация карбамоилфосфата и орнитина с образованием цитруллина; реакцию катализирует орнитин-карбамоилтрансфераза. На следующей стадии цитруллин превращается в аргинин в результате двух последовательно  протекающих реакций. Первая из них, энергозависимая,– это конденсация цитруллина и аспарагиновой кислоты с образованием аргининосукцината (эту реакцию катализирует аргининосукцинатсинтетаза). Аргининосукцинат распадается в следующей реакции на аргинин и фумарат при участии другого фермента – аргининосукцинатлиазы. На последнем этапе аргинин расщепляется на мочевину и орнитин под действием аргиназы. Суммарная реакция синтеза мочевины без учета всех промежуточных продуктов может быть представлена в следующем виде: 

       

     Учитывая  выше изложенные данные о механизмах обезвреживания аммиака в организме, можно сделать следующее заключение. Часть амиака используется на биосинтез  аминокислот путем восстановительного аминирования б-кетокислот по механизму  реакции трансаминирования. Аммиак связывается при биосинтезе глутамина  и аспарагина. Некоторое количество аммиака выводится с мочой  в виде аммонийных солей. В форме  креатинина, который образуется из креатина и креатинфосфата, выделяется из организма значительная часть  азота аминокислот. Наибольшее количество аммиака расходуется на синтез мочевины, которая выводится с мочой в качестве главного конечного продукта белкового обмена в организме человека и животных. Подсчитано, что в состоянии азотистого равновесия организм взрослого здорового человека потребляет и соответственно выделяет примерно 15 г азота в сутки; из экскретируемого с мочой количества азота на долю мочевины приходится около 85%, креатинина – около 5%, аммонийных солей – 3%, мочевой кислоты – 1% и на другие формы – около 6% .

1.3 Желчеобразовательная и экскреторная функция

 

     Печень  образует специальный жидкий экскрет  — желчь, которая выделяется в  тонкий кишечник. Нарушение экскреторной функции неблагоприятно влияет на переваривание  и всасывание липидов и вызывает накопление токсических продуктов  обмена пигментов и чужеродных веществ. Компонентами жёлчи, кроме воды, являются соли жёлчных кислот, холестерин, фосфолипиды, билирубин-глюкурониды, муцин, немного  белков (альбумины, 5’-нуклеотидаза, щелочная фосфатаза, ГГТП, иммуноглобулин А), различных  ионов (Na+, Cl-, HCO3-, Cu++, Fe+++, Se++ и др.), микроколичества липовитаминов, стероидных гормонов и т.д.

     Желчь – жидкий секрет желтовато-коричневого  цвета, в сутки у человека образуется 500–700 мл желчи (10 мл на 1 кг массы тела). Желчеобразование происходит непрерывно, хотя интенсивность этого процесса на протяжении суток резко колеблется. Вне пищеварения печеночная желчь  переходит в желчный пузырь, где  происходит ее сгущение в результате всасывания воды и электролитов. Относительная  плотность печеночной желчи 1,01, а  пузырной – 1,04. Концентрация основных компонентов в пузырной желчи  в 5–10 раз выше, чем в печеночной.

     Образование желчи начинается с активной секреции гепатоцитами воды, желчных кислот и билирубина, в результате которой  в желчных канальцах появляется так называемая первичная желчь. Она, проходя по желчным ходам, вступает в контакт с плазмой крови, вследствие чего между желчью и плазмой  устанавливается равновесие электролитов, т.е. в образовании желчи принимают  участие в основном два механизма  – фильтрация и секреция.

     В печеночной желчи можно выделить две группы веществ. Первая группа –  это вещества, которые присутствуют в желчи в количествах, мало отличающихся от их концентрации в плазме крови (например, ионы Na, К, креатин и др.), что в  какой-то мере служит доказательством  наличия фильтрационного механизма. Ко второй группе относятся соединения, концентрация которых в печеночной желчи во много раз превышает их содержание в плазме крови (билирубин, желчные кислоты и др.), что свидетельствует о наличии секреторного механизма. В последнее время появляется все больше данных о преимущественной роли активной секреции в механизме желчеобразования. Кроме того, в желчи обнаружен ряд ферментов, из которых особо следует отметить щелочную фосфатазу печеночного происхождения. При нарушении оттока желчи активность данного фермента в сыворотке крови возрастает.

     Основные функции желчи. 1. Эмульсификация. Соли желчных кислот обладают способностью значительно уменьшать поверхностное натяжение. Благодаря этому они осуществляют эмульгирование жиров в кишечнике, растворяют жирные кислоты и нерастворимые в воде мыла. 2. Нейтрализация кислоты. Желчь, рН которой немногим более 7,0, нейтрализует кислый химус, поступающий из желудка, подготавливая его для переваривания в кишечнике. 3. Экскреция. Желчь – важный носитель экскретируемых желчных кислот и холестерина. Кроме того, она удаляет из организма многие лекарственные вещества, токсины, желчные пигменты и различные неорганические вещества, такие, как медь, цинк и ртуть. 4. Растворение холестерина. Как отмечалось, холестерин, подобно высшим жирным кислотам, представляет собой нерастворимое в воде соединение, которое сохраняется в желчи в растворенном состоянии лишь благодаря присутствию в ней солей желчных кислот и фосфатидилхолина. При недостатке желчных кислот холестерин выпадает в осадок, при этом могут образовываться камни. Обычно камни имеют окрашенное желчным пигментом внутреннее ядро, состоящее из белка. Чаще всего встречаются камни, у которых ядро окружено чередующимися слоями холестерина и билирубината кальция. Такие камни содержат до 80% холестерина. Интенсивное образование камней отмечается при застое желчи и наличии инфекции. При застое желчи встречаются камни, содержащие 90–95% холестерина, а при инфекции могут образовываться камни, состоящие из билирубината кальция. Принято считать, что присутствие бактерий сопровождается увеличением в-глюкуронидазной активности желчи, что приводит к расщеплению конъюгатов билирубина; освобождающийся билирубин служит субстратом для образования камней. 
 

1.4 Биотрансформационная (обезвреживающая) функция

     Печень  является основным органом, где происходит обезвреживание природных продуктов  обмена и чужеродных веществ. Чужеродные вещества (ксенобиотики) в печени превращаются в менее токсичные и индифферентные вещества. В этом смысле можно говорить об обезвреживании, но более точно  применяется термин биотрансформация. Эти процессы проходят путем окисления, восстановления, метилирования, ацетилирования и конъюгации с теми или иными  веществами. Окисление, восстановление и гидролиз чужеродных соединений осуществляют в основном микросомальные ферменты. Наряду с микросомальным в печени существует также пероксисомальное окисление.

     Пероксисомы – микротельца, обнаруженные в гепатоцитах; их можно рассматривать как специализированные окислительные органеллы. Эти микротельца  содержат оксидазу мочевой кислоты, лактатоксидазу, оксидазу D-аминокислот, а также каталазу (катализирует расщепление  перекиси водорода, которая образуется при действии указанных оксидаз). Пероксисомальное окисление, так же как и микросомальное, не сопровождается образованием макроэргических связей.

     В печени широко представлены также защитные синтезы, например синтез мочевины, в  результате которого обезвреживается  весьма токсичный аммиак. Это было рассмотренно в мочевинообразавательной  функции. В результате гнилостных процессов, протекающих в кишечнике, из тирозина образуются фенол и крезол, а из триптофона – скатол и индол. Эти вещества всасываются и с током крови поступают в печень, где обезвреживаются путем образования парных соединений с серной или глюкуроновой кислотой. Обезвреживание фенола, крезола, скатола и индола в печени происходит в результате взаимодействия этих соединений не со свободными серной и глюкуроновой кислотами, а с их так называемыми активными формами: ФАФС и УДФГК. Глюкуроновая кислота участвует не только в обезвреживании продуктов гниения белковых веществ, образовавшихся в кишечнике, но и в связывании ряда других токсичных соединений, образующихся в процессе обмена в тканях. В частности, свободный, или непрямой, билирубин, обладающий значительной токсичностью, в печени взаимодействует с глюкуроновой кислотой, образуя моно- и диглюкурониды билирубина. Нормальным метаболитом является и гиппуровая кислота, образующаяся в печени из бензойной кислоты и глицина. Синтез гиппуровой кислоты у человека протекает преимущественно в печени.

     В печени широко представлены процессы метилирования. Так, перед выделением с мочой амид никотиновой кислоты (витамин РР) метилируется в печени; в результате образуется N-метилникотинамид. Наряду с метилированием интенсивно протекают и процессы ацетилирования. В частности, в печени ацетилированию подвергаются различные сульфаниламидные препараты.

Информация о работе Биохимия печени