Ответы по прикладной математике

Автор работы: Пользователь скрыл имя, 16 Января 2011 в 22:46, шпаргалка

Краткое описание

Ответы на основные вопросы.

Содержимое работы - 1 файл

Шпаргалка01.doc

— 115.50 Кб (Скачать файл)

Дисперсия Н.С.В. и ее свойства.

Дисперсия Н.С.В. Х, возможные значения которой принадлежат всей оси ОХ, определяется равенством: D(X)=интеграл от –бесконечности до бесконечности [x-M(X)]*2f(x)dx, или равносильным равенством: D(X)=интеграл от –бесконечности до бесконечности x*2f(x)dx – [M(X)]*2. В частности, если все возможные значения х принадлежат интервалу (a,b),то D(X)=интервал от а до b [x – M(X)]*2f(x)dx,или D(X)=интеграл от a до b x*2f(x)dx – [M(X)]*2. Все свойства дисперсии Д.С.В. сохраняются и для Н.С.В. 

Равномерный закон распределения.

Равномерным называют распределение вероятностей Н.С.В. Х, если на интервале (а,b), которому принадлежат  все возможные значения Х, плотность  сохраняет постоянное значение, а  именно f(x)=1/(b-a); вне этого интервала f(x)=0. Нетрудно убедиться, что интеграл от –бесконечности до бесконечности р(х)dx=1. Для С.В., имеющей равномерное распределение , вероятность того, что С.В. примет значения из заданного интервала (х,х+дельта) прин. [a,b], не зависит от положения этого интервала на числовой оси и пропорциональна длине этого интервала дельта: P{x<X<x+дельта}=интеграл от х до х+дельта 1/b-adt=дельта/b-a. Функция распределения Х имеет вид: F(x)=0, при х<=a, x-a/b-a,при a<x<=b,1при х>b. 

Показательный закон распределения.

Н.С.В. Х, принимающая  неотрицательные значения, имеет показательное распределение с параметром лямда, если плотность распределения С.В. при x>=0 равна р(х)=лямда*е в степени - лямда*х и при x<0 р(х)=0. Функция распределения С.В. Х равна F(x)=интеграл от –бесконечности до х р(t)dt=0, при x<=0,1-е в степени –лямда*х при x>0. 

Нормальный  закон распределения.

Н.С.В. Х имеет  нормальное распределение вероятностей с параметром а и сигма>0, если ее плотность распределения имеет  вид: р(х)=1/(корень квадратный из 2пи *сигма) * е в степени –1/2*(x-a/сигма) в степени 2. Если Х имеет нормальное распределение, то будем кратко записывать это в виде Х прибл. N(a,сигма). Так как фи(х)=1/(корень из 2пи)*е в степени –х*2/2 – плотность нормального закона распределения с параметрами а=0 и сигма=1, то функция Ф(х)=1/(корень из 2пи)* интеграл от –бесконечности до х е в степени –t*2/2dt, с помощью которой вычисляется вероятность P{a<=мюn-np/(корень из npq)<=b}, является функцией распределения нормального распределения с параметрами а=0, сигма=1. 
 
 
 
 

Функция Лапласа, ее свойства; вероятность попадания в интервал для нормального распределения С.В.

СВ называется нормально распределенной, если ее плотность распределения имеет  вид 

f(x)=(1/s Ö (2p ))*e-(x-a)2/2s 2; s >0.

Функцией Лапласа  называется функция вида(Z=x-a/s )

Ф(Х)=  
.

Аргумент—переменная верхнего предела.

Св-ва;

Функция Ф(х)—нечетная, т.е. Ф(-х_=-Ф(х)

Функция монотонно  возрастает, т.е. х2>x1 следовательно, Ф(х2)>Ф(х1)

Ф(х2)= 
—> Ф(х2)>Ф(х1)

3.Ф(+¥ )=0,5.Доказательство.

Ф(¥ )=

Ф-ция Ф(Х) возрастает и стремится к 0,5.

Вероятность попадания  в интервал для НРСВ.

Пусть x —НРСВ с пар. а и s (s >0). 

Неравенство Чебышева.

Если известна дисперсия С.В., то с ее помощью  можно оценить вероятность отклонения этой величины на заданное значение от своего мат. ожидания, причем оценка вероятности отклонения зависит лишь от дисперсии. Соответствующую оценку вероятности дает неравенство Чебышева. Неравенство Чебышева является частным случаем более общего неравенства, позволяющего оценить вероятность события, состоящего в том, что С.В. Х превзойдет по модулю произвольное число t>0. P{|X – MX|>=t}<=1/t*2 M(X – MX)*2=1/t*2 DX – неравенство Чебышева. Оно справедливо для любых С.В., имеющих дисперсию; оценка вероятности в нем не зависит от закона распределения С.В. Х. 

Теорема Чебышева.

Если последовательность попарно независимых С.В. Х1,Х2,Х3,…,Xn,…  имеет конечные мат. ожидания и дисперсии  этих величин равномерно ограничены (не превышают постоянного числа С), то среднее арифметическое С.В. сходится по вероятности к среднему арифметическому их мат. ожиданий, т.е. если эпселен – любое положительное число, то: lim при n стремящемся к бесконечности P(|1/n сумма по i от 1 до n Xi – 1/n сумма по i от 1 до n M(Xi)|<эпселен)=1. В частности, среднее арифметическое последовательности попарно независимых величин, дисперсии которых равномерно ограничены и которые имеют одно и тоже мат. ожидание а, сходится по вероятности к мат. ожиданию а, т.е. если эпселен – любое положительное число, то: lim при n стремящемся к бесконечности P(|1/n сумма по i от 1 до n Xi – a|<эпселен)=1. 
 
 

Центральная предельная теорема, следствия (теорема  Муавра-Лапласа).

Локальная теорема  Лапласа. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р(0<p<1), событие наступит ровно k раз (безразлично, в какой последовательности), приближенно равна (тем точнее, чем больше n). Pn(k)=1/(корень из npq)*фи(х). Здесь Фи(х)=1/(корень из 2пи)*е в степени –х*2/2, x=k – np/(корень из npq). Интегральная теорема Лапласа. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р(0<p<1), событие наступит не меньше k1 раз и не более k2 раз, приближенно равна: P(k1;k2)=Ф(х’’) – Ф(х’). Здесь Ф(х)=1/(корень из 2пи) * интеграл от0 до х е в степени –(z*2/2)dz – функция Лапласа, х’=(k1 – np)/(корень из npq), х’’=(k2 – np)/(корень из npq). 

Двумерная С.В. Двумерная функция  распределения и ее свойства.

Двумерной называют С.В. (Х,Y), возможные значения которой  есть пары чисел (x,y). Составляющие Х  и Y, рассматриваемые одновременно, образуют систему двух С.В. Дискретной называют двумерную величину, составляющие которой дискретны. Непрерывной называют двумерную величину, составляющие которой непрерывны. Законом распределения Д.С.В. называют соответствие между возможными значениями и их вероятностями. Функция распределения вероятностей Д.С.В. называют функцию F(X,Y), определяющую для каждой пары чисел (х,y) вероятность того, что Х примет значение, меньшее х, при этом Y примет значение, меньшее y: F(x,y)=P(X<x,Y<y). Свойства:1) Значения функции распределения удовлетворяют двойному неравенству: 0<=F(x,y)<=1. 2) Функция распределения есть неубывающая функция по каждому аргументу:F(x2,y)>=F(x1,y), если х2>x1. F(x,y2)>=F(x,y1), если y2>y1. 3) Имеют место предельные соотношения: 1) F(-бесконечность, у)=0, 2) F(x,-бесконечность)=0, 3) F(-бесконечность, -бесконечность)=0, 4) F(бесконечность, бесконечность)=1. 4) а) при у=бесконечность функция распределения системы становится функцией распределения составляющей Х: F(x,бесконечность)=F1(x). Б) при х=бесконечность функция распределения системы становится функцией распределения составляющей У: F(бесконечность, у)=F2(y). 
 
 
 
 
 
 
 
 

Условные  и безусловные  законы распределения  компонент двумерной  С.В.

Условные. 1) Для  дискретной двумерной С.В. Пусть  составляющие X и Y дискретны и имеют  соответственно следующие возможные  значения: x1,x2,…,xn; y1,y2,…,ym. Условным распределением составляющей Х при Y=yj (j сохраняет одно и то же значение при всех возможных значениях Х) называют совокупность условных вероятностей p(x1|yj), p(x2|yj),…,p(xn|yj). Аналогично определяется условное распределение Y. Условные вероятности составляющих Х и Y вычисляют соответственно по формулам: p(xj|yi)=p(xi,yj)/p(yj), p(yj|xi)=p(xi,yj)/p(xi). 

Предмет математической статистики. Генеральная совокупность и выборка.

Мат. статистика опирается на теорию вероятностей, и ее цель – оценить характеристики генеральной совокупности по выборочным данным. Генеральной совокупностью называется вероятностное пространство {омега,S,P} (т.е. пространство элементарных событий омега с заданным на нем полем событий S и вероятностями Р) и определенная на этом пространстве С.В. Х. Случайной выборкой или просто выборкой объема n называется последовательность Х1,Х2,…,Xn, n независимых одинаково распределенных С.В., распределение каждой из которых совпадает с распределением исследуемой С.В. Х. Иными словами, случайная выборка – это результат n последовательных и независимых наблюдений над С.В. Х, представляющей генеральную совокупность. 

Выборочное  оценивание функции  распределения и  гистограмма.

Наиболее полная характеристика С.В. – это ее Ф.Р. Пусть х1,х2,…,xn – выборка из генеральной совокупности, представленной С.В. Х. Рассмотрим, как оценить Ф.Р. F(x) этой С.В., о которой известно только, что она непрерывна. Чтобы построить оценку F^n(x) Ф.Р. F(x), обычно располагают наблюдения xi в порядке их возрастания, т.е. находят вначале X*1=minXi, затем следующее по величине наблюдаемое значение и т.д.; если есть одинаковые значения, то их расположение не играет никакой роли. Последовательность неубывающих величин Х*1<=X*2<=X*n, полученных после упорядочения выборки, называется вариационным рядом. Существует статистическое и эмпирическое распределение. Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длины h, а высоты равны отношению ni/h (плотность частоты), где ni – сумма частот вариант попавших в i-ый интервал. 

Корреляционный  момент, коэффициент  корреляции.

Корреляционным  моментом СВ x и h называется мат. ожидание произведения отклонений этих СВ. m x h =М((x —М(x ))*(h —М(h )))

Для вычисления корреляционного момента может быть использована формула:

m x h =М(x *h )—М(x )*М(h ) Доказательство: По определению m x h =М((x —М(x ))*(h —М(h ))) По свойству мат. ожидания

m x h =М(x h —М(h )—h М(x )+М(x )*М(h ))=М(x h )—М(h )*М(x )—М(x )*М(h )+М(x )*М(h )=М(x h )—М(x )*(h )

Предполагая, что  x и h независимые СВ, тогда m x h =М(x h )—М(x )*М(h )=М(x )*М(h )—М(x )*М(h )=0; m x h =0. Можно доказать, что если корреляционный момент=0, то СВ могут быть как зависимыми, так и независимыми. Если m x h не равен 0, то СВ x и h зависимы. Если СВ x и h зависимы, то корреляционный момент может быть равным 0 и не равным 0. Можно показать, что корреляционный момент характеризует степень линейной зависимости между составляющими x и h . При этом корреляционный момент зависит от размерности самих СВ. Чтобы сделать характеристику линейной связи x и h независимой от размерностей СВ x и h , вводится коэффициент корреляции:

Кx h =m x h /s (x )*s (h ) Коэффициент корреляции не зависит от разностей СВ x и h и только показывает степень линейной зависимости между x и h , обусловленную только вероятностными свойствами x и h . Коэффициент корреляции определяет наклон прямой на графике в системе координат (x ,h ) Свойства коэффициента корреляции.

-1<=Кx h <=1

Если Кx h =± 1, то линейная зависимость между x и h и они не СВ.

Кx h >0, то с ростом одной составляющей, вторая также в среднем растет.

Кx h <0, то с убыванием одной составляющей, вторая в среднем убывает.

D(x ± h )=D(x )+D(h )± 2m x h

Доказательство.

D(x ± h )=M((x ± h )2)—M2(x ± h )=M(x 2± 2x h +h 2)—(M(x )± M(h ))2=M(x 2)± 2M(x h )+M(h 2)—+M2(x )+2M(x )*M(h )—M2(h )=D(x )+D(h )± 2(M(x h ))—M(x )*M(h )=D(x )+D(h )± 2m x h 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Точечные  оценки числовых характеристик. Основные определения. Метод моментов.

Статистической  оценкой K * неизвестного параметра K теоретического распределения называют функцию f(X1,X2,…,Xn) от наблюдаемых С.В. X1,X2,…,Xn. Точечной называют статистическую оценку, которая определяется одним числом K *=f(x1,x2,…,xn), где х1,х2,…,xn – результаты n наблюдений над количественным признаком Х (выборка). Несмещенной называют точечную оценку, мат. ожидание которой равно оцениваемому параметру при любом объеме выборки. Смещенной называют точечную оценку, мат. ожидание которой не равно оцениваемому параметру. Несмещенной оценкой генеральной средней (мат. ожидания) служит выборочная средняя: Хв=(сумма по i от 1 до k nixi)/n, где xi – варианта выборки, ni – частота варианты xi, n=сумма по i от 1 до k ni – объем выборки. Смещенной оценкой генеральной дисперсии служит выборочная дисперсия: Dв=(сумма по i от 1 до k ni(Хi-Xв)*2)/n. Несмещенной оценкой генеральной дисперсии служит исправленная выборочная дисперсия: s*2=n/n-1*Dв=сумма ni(xj – Xв)*2/n-1. Метод моментов точечной оценки неизвестных параметров заданного распределения состоит в приравнивании теоретических моментов соответствующим эмпирическим моментам того же порядка. Если распределение определяется одним параметром, то для его отыскания приравнивают один теоретический момент одному эмпирическому моменту того же порядка. Например, можно приравнять начальный теоретический момент первого порядка начальному эмпирическому моменту первого порядка: v1=M1. Учитывая, что v1=M(X) и М1=Хв, получим М(Х)=Хв. Если распределение определяется двумя параметрами, то приравнивают два теоретических момента двум соответствующим эмпирическим моментам того же порядка. Учитывая, что v1=M(X),M1=Хв,мю=D(X),m2=Dв, имеем систему: М(Х)=Хв, D(X)=Dв.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Метод наибольшего правдоподобия.

Метод наибольшего  правдоподобия точечной оценки неизвестных параметров заданного распределения сводится к отысканию максимума функции одного или нескольких оцениваемых параметров. Д.С.В. Пусть Х – Д.С.В., которая в результате n опытов приняла возможные значения х1,х2,…,xn. Допустим, что вид закона распределения величины Х задан, но неизвестен параметр K , которым определяется этот закон; требуется найти его точечную оценку K *=K (x1,x2,…,xn). Обозначим вероятность того, что в результате испытания величина Х примет значение xi через р(xi;K ). Функцией правдоподобия Д.С.В. Х называют функцию аргумента K : L (x1,x2,…,xn;K )=p(x1;K )*p(x2;K )…p(xn;K ). Оценкой наибольшего правдоподобия параметра K называют такое его значение K *, при котором функция правдоподобия достигает максимума. Функции L и lnL достигают максимума при одном и том же значении K , поэтому вместо отыскания максимума функции L ищут, что удобнее, максимум функции lnL. Н.С.В. Пусть Х – Н.С.В., которая в результате n испытаний приняла значения х1,х2,…,xn. Допустим, что вид плотности распределения – функции f(x) – задан, но неизвестен параметр K , которым определяется эта функция. Функцией правдоподобия Н.С.В. Х называют функцию аргумента K : L(x1,x2,…,xn;K )=f(x1;K )*f(x2;K )…f(xn;K ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Информация о работе Ответы по прикладной математике