Автор работы: Лена Шугалеева, 25 Сентября 2010 в 19:08, курсовая работа
Математическое программирование занимается изучение экстремальных задач и поиском методов их решения. Задачи математического программирования формулируются следующим образом : найти экстремум некоторой функции многих переменных f ( x1, x2, ... , xn ) при ограничениях gi ( x1, x2, ... , xn ) bi , где gi - функция, описывающая ограничения, - один из следующих знаков , , , а bi - действительное число, i = 1, ... , m. f называется функцией цели ( целевая функция ).
Линейное программирование - это раздел математического программирования, в котором рассматриваются методы решения экстремальных задач с линейным функционалом и линейными ограничениями, которым должны удовлетворять искомые переменные.
Задачу линейного программирования можно сформулировать так . Найти max
при условии : a11 x1 + a12 x2 + . . . + a1n xn b1 ;
a21 x1 + a22 x2 + . . . + a2n xn b2 ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1 x1 + am2 x2 + . . . + amn xn bm ;
x1 0, x2 0, . . . , xn 0 .
Эти ограничения называются условиями неотрицательности. Если все ограни-чения заданы в виде строгих равенств, то данная форма называется канонической.
- 7 -
В матричной форме задачу линейного программирования записывают следующим образом. Найти
max cT x
при условии
A x b ;
x 0 ,
где А - матрица ограничений размером ( mn), b(m1) - вектор-столбец свобод-ных членов, x(n 1) - вектор переменных, сТ = [c1, c2, ... , cn ] - вектор-строка коэффициентов целевой функции.
Решение х0 называется оптимальным, если для него выполняется условие сТ х0 сТ х , для всех х R(x).
Поскольку min f(x) эквивалентен max [ - f(x) ] , то задачу линейного программирования всегда можно свести к эквивалентной задаче максимизации.
Для решения задач данного типа применяются методы:
1) графический;
2) табличный ( прямой, простой ) симплекс - метод;
3) метод искусственного базиса;
4) модифицированный симплекс - метод;
5) двойственный симплекс - метод.
1.2 Табличный симплекс - метод
Для его применения необходимо, чтобы знаки в ограничениях были вида “ меньше либо равно ”, а компоненты вектора b - положительны.
Алгоритм решения сводится к следующему :
Приведение системы ограничений к каноническому виду путём введения дополнительных переменных для приведения неравенств к равенствам.
Если в исходной системе ограничений присутствовали знаки “ равно ”
- 8 -
или “ больше либо равно ”, то в указанные ограничения добавляются
искусственные переменные, которые так же вводятся и в целевую функцию со знаками, определяемыми типом оптимума.
Формируется симплекс-таблица.
Рассчитываются симплекс-разности.
Принемается решение об окончании либо продолжении счёта.
При необходимости выполняются итерации.
На каждой итерации определяется вектор, вводимый в базис, и вектор, выводимый из базиса. Таблица пересчитывается по методу Жордана-Гаусса или каким-нибудь другим способом.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1. КРАТКИЙ
ОБЗОР АЛГОРИТМОВ РЕШЕНИЯ
ДАННОГО ТИПА . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1 Математическое
1.2 Табличный симплекс - метод . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Метод искусственного базиса . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Модифицированный симплекс - метод . . . . . . . . . . . . . . . . . 8
2. СОДЕРЖАТЕЛЬНАЯ ПОСТАНОВКА ЗАДАЧИ . . . . . . . . . . . . 10
3. РАЗРАБОТКА И ОПИСАНИЕ АЛГОРИТМА РЕШЕНИЯ
ЗАДАЧИ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Построение математической
3.2 Решение задачи вручную . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4. АНАЛИЗ МОДЕЛИ НА ЧУВСТВИТЕЛЬНОСТЬ . . . . . . . . . . . . 16
4.1 Построение двойственной
решение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Определение статуса ресурсов . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Определение значимости
4.4 Определение допустимого
ресурсов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Исследование зависимости
изменений запасов ресурсов . . . .
. . . . . . . . . . . . . . . . . . . . . . .
19
- 4 -
5. ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПОЛУЧЕННЫХ
РЕЗУЛЬТАТОВ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6. ВЫВОДЫ
И РЕКОМЕНДАЦИИ ПО
ИСПОЛЬЗОВАНИЮ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
ПРИЛОЖЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ЛИТЕРАТУРА . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
- 5 -
ВВЕДЕНИЕ
Цель данного курсового
- 6 -
1. КРАТКИЙ ОБЗОР АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧ
ДАННОГО ТИПА
1.1
Математическое
Математическое программирование занимается изучение экстремальных задач и поиском методов их решения. Задачи математического программирования формулируются следующим образом : найти экстремум некоторой функции многих переменных f ( x1, x2, ... , xn ) при ограничениях gi ( x1, x2, ... , xn ) * bi , где gi - функция, описывающая ограничения, * - один из следующих знаков £ , = , ³ , а bi - действительное число, i = 1, ... , m. f называется функцией цели ( целевая функция ).
Линейное программирование - это раздел математического программирования, в котором рассматриваются методы решения экстремальных задач с линейным функционалом и линейными ограничениями, которым должны удовлетворять искомые переменные.
Задачу
линейного программирования можно
сформулировать так . Найти max
при условии : a11 x1 + a12 x2 + . . . + a1n xn £ b1 ;
Эти
ограничения называются условиями
неотрицательности. Если все ограничения
заданы в виде строгих равенств, то данная
форма называется канонической.
-
7 -
В матричной форме задачу линейного программирования записывают следующим образом. Найти
max cT x
при условии
A x £ b ;
x ³ 0 ,
где А - матрица ограничений размером ( m´n), b(m´1) - вектор-столбец свободных членов, x(n ´ 1) - вектор переменных, сТ = [c1, c2, ... , cn ] - вектор-строка коэффициентов целевой функции.
Решение х0 называется оптимальным, если для него выполняется условие сТ х0 ³ сТ х , для всех х Î R(x).
Поскольку min f(x) эквивалентен max [ - f(x) ] , то задачу линейного программирования всегда можно свести к эквивалентной задаче максимизации.
Для решения задач данного типа применяются методы:
1) графический;
2) табличный ( прямой, простой ) симплекс - метод;
3) метод искусственного базиса;
4) модифицированный симплекс - метод;
5) двойственный симплекс - метод.
1.2 Табличный симплекс - метод
Для его применения необходимо, чтобы знаки в ограничениях были вида “ меньше либо равно ”, а компоненты вектора b - положительны.
Алгоритм решения сводится к следующему :
Приведение
системы ограничений к
Если
в исходной системе
- 8 -
или “ больше либо равно ”, то в указанные ограничения добавляются
искусственные переменные, которые так же вводятся и в целевую функцию со знаками, определяемыми типом оптимума.
Формируется симплекс-таблица.
Рассчитываются симплекс-разности.
Принемается решение об окончании либо продолжении счёта.
При
необходимости выполняются
На
каждой итерации определяется
вектор, вводимый в базис, и
вектор, выводимый из базиса. Таблица пересчитывается
по методу Жордана-Гаусса или каким-нибудь
другим способом.
1.3 Метод
искусственного базиса
Данный
метод решения применяется при
наличии в ограничении знаков
Если
в оптимальном решении m
- задачи нет искусственных переменных,
это решение есть оптимальное решение
исходной задачи. Если же в оптимальном
решении m
- задачи хоть одна из искусственных переменных
будет отлична от нуля, то система ограничений
исходной задачи несовместна и исходная
задача неразрешима.
1.4 Модифицированный симплекс - метод
В
основу данной разновидности симплекс-метода
положены такие особен -
-
9 -
ности линейной алгебры , которые позволяют в ходе решения задачи работать с частью матрицы ограничений. Иногда метод называют методом обратной матрицы.
В процессе работы алгоритма происходит спонтанное обращение матрицы ограничений по частям, соответствующим текущим базисным векторам. Указанная способность делает весьма привлекательной машинную реализацию вычислений вследствие экономии памяти под промежуточные переменные и значительного сокращения времени счёта. Хорош для ситуаций, когда число переменных n значительно превышает число ограничений m.
В целом, метод отражает традиционные черты общего подхода к решению задач линейного программирования, включающего в себя канонизацию условий задачи, расчёт симплекс-разностей, проверку условий оптимальности, принятие решений о коррекции базиса и исключение Жордана-Гаусса.
Особенности заключаются в наличии двух таблиц - основной и вспомогательной, порядке их заполнения и некоторой специфичности расчётных формул.
- 10 -
2.
СОДЕРЖАТЕЛЬНАЯ ПОСТАНОВКА
ЗАДАЧИ
Для производства двух видов изделий А и В используется три типа технологического оборудования. На производство единицы изделия А идёт времени, часов : оборудованием 1-го типа - а1 , оборудованием 2-го типа - а2 , оборудованием 3-го типа - а3 . На производство единицы изделия В идёт времени, часов : оборудованием 1-го типа - b1 , оборудованием 2-го типа - b2 ,, оборудованием 3-го типа - b3 .
На изготовление всех изделий администрация предприятия может предоставить оборудование 1-го типа не более, чем на t1 , оборудование 2-го типа не более, чем на t2 , оборудование 3-го типа не более, чем на t3 часов.
Прибыль от реализации единицы готового изделия А составляет a рублей, а изделия В - b рублей.
Составить план производства изделий А и В, обеспечивающий максимальную прибыль от их реализации. Решить задачу простым симплекс-методом. Дать геометрическое истолкование задачи, используя для этого её формулировку с ограничениями-неравенствами.