Шпаргалкапо "Эконометрике"

Автор работы: Пользователь скрыл имя, 16 Мая 2012 в 05:34, шпаргалка

Краткое описание

16, 21. Основные понятия и особ-ти эконометрического метода
33. Типы экономических данных, используемых в эконометрических исследованиях.
6. Классификация эконометрических моделей.

Содержимое работы - 1 файл

готово!!!.doc

— 799.50 Кб (Скачать файл)

Для устранения или уменьшения мультиколлинеарности используется ряд методов. Наиболее распространенные в таких случаях следующие приемы: исключение одного из двух сильно связанных факторов, переход от первоначальных факторов к их главным компонентам, число которых быть может меньше, затем возвращение к первоначальным факторам.

Самый простой из них (но не всегда  самый  эффективный) состоит в том, что  из двух объясняющих переменных, имеющих высокий коэффициент корреляции (больше 0,8), одну переменную исключают из рассмотрения. При этом какую переменную оставить, а какую удалить из анализа, решают в первую очередь на основании экономических соображений. Если с экономической точки зрения ни одной из переменных нельзя отдать предпочтение, то оставляют ту из двух переменных, которая имеет больший коэффициент корреляции с зависимой переменной.

Еще одним  из возможных методов устранения или уменьшения мультиколлинеарности является использование стратегии шагового отбора, реализованную в ряде алгоритмов пошаговой регрессии.

Наиболее  широкое применение получили следующие  схемы построения уравнения множественной регрессии: метод включения факторов и метод исключения – отсев факторов из полного его набора.

В соответствии с первой схемой признак включается в уравнение в том случае, если его включение существенно увеличивает  значение множественного коэффициента корреляции, что позволяет последовательно  отбирать факторы, оказывающие существенное влияние на результирующий признак даже в условиях мультиколлинеарности системы признаков, отобранных в качестве аргументов из содержательных соображений. При этом  первым в уравнение включается фактор, наиболее тесно коррелирующий с Y, вторым в уравнение включается тот фактор, который в паре с первым из отобранных дает максимальное значение множественного коэффициента корреляции, и т.д. Существенно, что на каждом шаге получают новое значение множественного коэффициента (большее, чем на предыдущем шаге); тем самым определяется вклад каждого отобранного фактора в объясненную дисперсию Y.

Вторая  схема пошаговой регрессии основана на последовательном исключении факторов с помощью t -критерия. Она заключается в том, что после построения уравнения регрессии и оценки значимости всех коэффициентов регрессии из модели исключают тот фактор, коэффициент при котором незначим и имеет наименьший коэффициент t . После этого получают новое уравнение множественной регрессии и снова производят оценку значимости всех оставшихся коэффициентов регрессии. Если среди них опять окажутся незначимые, то опять исключают фактор с наименьшим значением t -критерия. Процесс исключения факторов останавливается на том шаге, при котором все регрессионные коэффициенты значимы.

Ни одна их этих процедур не гарантирует получения  оптимального набора переменных. Однако при практическом применении они позволяют получить достаточно хорошие наборы существенно влияющих факторов. 
 
 
 
 
 
 
 
 
 
 

13. Модель множественной регрессии. Выбор вида модели и оценка ее параметров

Модель  парной регрессии устанавливает  зависимость интересующей нас величины только от 1-го фактора. На показатель влияет целая совокупность факторов. Если использовать линейную математическую функцию, то в этом случае модель множественной регрессии примет вид yi=a0+a1xi1+a2xi2+a3xi3+…+amxim+ei. Каждый из параметров модели аi показывает, на сколько меняется исследуемая величина у при изменении соответствующего фактора на 1 единицу. Эта модель универсальна в том смысле, что позволяет установить зависимость показателя, как от всей совокупности факторов, так и от каждого из них в отдельности. Эта модель применяется при изучении проблем спроса, функции доходности акции, функции издержек производства, функции прибыли

Функция , описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии. Уравнение регрессии показывает ожидаемое значение зависимой переменной при определенных значениях зависимых переменных .

В зависимости  от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии).

В зависимости  от вида  функции  модели делятся на линейные и нелинейные.Модель множественной линейной регрессии имеет вид:y i =   a0 + a1x i 1 +a2x i 2  +…+  ak x i k + ei                                                                   (2.1) 

  - количество наблюдений.                                                        

коэффициент регрессии aj показывает, на какую величину в среднем изменится результативный признак , если переменную xj увеличить на единицу измерения, т. е. aj является нормативным коэффициентом.

     Коэффициент может быть отрицательным. Это означает, что область существования показателя не включает нулевых значений параметров. Если же а0>0, то область существования показателя включает нулевые значения параметров, а сам коэффициент характеризует среднее значение показателя при отсутствии воздействий параметров.

Анализ  уравнения (2.1)  и методика определения  параметров становятся более наглядными, а расчетные процедуры существенно упрощаются, если воспользоваться матричной формой записи:

                                                                                                           (2.2)   .                                                                             

  Где У – вектор зависимой переменной размерности п ´ 1, представляющий собой п наблюдений значений . 

Х- матрица п наблюдений независимых переменных , размерность матрицы Х равна п ´ (k+1) .  Дополнительный фактор Х0, состоящий из единиц, вводится для вычисления  свободного члена. В качестве исходных данных могут быть временные ряды или пространственная выборка.

К - количество факторов, включенных в модель.

        a — подлежащий оцениванию вектор неизвестных параметров размерности (k+1) ´ 1;

        — вектор случайных отклонений (возмущений) размерности п ´ 1. отражает тот факт, что изменение будет неточно описываться изменением объясняющих переменных  Х, так как существуют и другие факторы, неучтенные в данной модели.

Таким образом,

 
Y = ,      
 
X = , ,
 
  a = .
 

Уравнение (2.2) содержит значения неизвестных  параметров a0,a1,a2,… ,ak . Эти величины оцениваются на основе выборочных наблюдений, поэтому полученные расчетные показатели не являются истинными, а представляют собой лишь их статистические оценки. Модель линейной регрессии, в которой вместо истинных значений параметров подставлены их оценки (а именно такие регрессии и применяются на практике), имеет вид

                                        ,                                        (2.3)

где A — вектор оценок параметров;  е — вектор «оцененных» отклонений регрессии, остатки регрессии  е = Y - ХА; —оценка значений Y, равная ХА. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

17. Отбор факторов при построении множественной регрессии. Процедура пошагового отбора переменных.

При построении системы факторов необходимо соблюдать  следующие условия: 1) должны быть количественно измеримы; 2) теоретически обоснованы; 3) линейно независимы друг от друга; 4) одна модель не должна включать в себя совокупный фактор и факторы его образующие; 5) тесно связаны между собой. Для реализации 5-го требования строят матрицу коэф-в парной корреляции. На основании этой матрицы выбирают те факторы, связь которых с величиной наиболее тесная. Затем проверяют наличие мультиколлинеарности (МК) факторов. Два фактора МК, если . МК факторы нельзя включать в одну модель, нужно выбрать один из них или заменить оба совокупной функцией.

Эта матрица симметрична относительно главной диагонали, т.е. состоит из двух одинаковых треугольников. Она позволяет выбрать факторы наиболее тесно связанные с интересующей нас величиной, а также установить связь между самими факторами. Как правило, в регрессионной модели нельзя включать факторы, тесно связанные между собой.

одним из возможных методов устранения или уменьшения мультиколлинеарности является использование стратегии шагового отбора, реализованную в ряде алгоритмов пошаговой регрессии.

Наиболее  широкое применение получили следующие  схемы построения уравнения множественной регрессии: метод включения факторов и метод исключения – отсев факторов из полного его набора.

В соответствии с первой схемой признак включается в уравнение в том случае, если его включение существенно увеличивает значение множественного коэффициента корреляции, что позволяет последовательно отбирать факторы, оказывающие существенное влияние на результирующий признак даже в условиях мультиколлинеарности системы признаков, отобранных в качестве аргументов из содержательных соображений. При этом  первым в уравнение включается фактор, наиболее тесно коррелирующий с Y, вторым в уравнение включается тот фактор, который в паре с первым из отобранных дает максимальное значение множественного коэффициента корреляции, и т.д. Существенно, что на каждом шаге получают новое значение множественного коэффициента (большее, чем на предыдущем шаге); тем самым определяется вклад каждого отобранного фактора в объясненную дисперсию Y.

Вторая  схема пошаговой регрессии основана на последовательном исключении факторов с помощью t -критерия. Она заключается в том, что после построения уравнения регрессии и оценки значимости всех коэффициентов регрессии из модели исключают тот фактор, коэффициент при котором незначим и имеет наименьший коэффициент t . После этого получают новое уравнение множественной регрессии и снова производят оценку значимости всех оставшихся коэффициентов регрессии. Если среди них опять окажутся незначимые, то опять исключают фактор с наименьшим значением t -критерия. Процесс исключения факторов останавливается на том шаге, при котором все регрессионные коэффициенты значимы.

Ни одна их этих процедур не гарантирует получения  оптимального набора переменных. Однако при практическом применении они позволяют получить достаточно хорошие наборы существенно влияющих факторов. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12. .модель множеств регрессии.Выбор вида модели и оценка ее параметров.

Модель  парной регрессии устанавливает  зависимость интересующей нас величины только от 1-го фактора. На показатель влияет целая совокупность факторов. Если использовать линейную математическую функцию, то в этом случае модель множественной регрессии примет вид yi=a0+a1xi1+a2xi2+a3xi3+…+amxim+ei. Каждый из параметров модели аi показывает, на сколько меняется исследуемая величина у при изменении соответствующего фактора на 1 единицу. Эта модель универсальна в том смысле, что позволяет установить зависимость показателя, как от всей совокупности факторов, так и от каждого из них в отдельности. Эта модель применяется при изучении проблем спроса, функции доходности акции, функции издержек производства, функции прибыли

Функция , описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии. Уравнение регрессии показывает ожидаемое значение зависимой переменной при определенных значениях зависимых переменных .

Информация о работе Шпаргалкапо "Эконометрике"