Шпаргалкапо "Эконометрике"

Автор работы: Пользователь скрыл имя, 16 Мая 2012 в 05:34, шпаргалка

Краткое описание

16, 21. Основные понятия и особ-ти эконометрического метода
33. Типы экономических данных, используемых в эконометрических исследованиях.
6. Классификация эконометрических моделей.

Содержимое работы - 1 файл

готово!!!.doc

— 799.50 Кб (Скачать файл)

16, 21. Основные понятия и особ-ти эконометрического метода

Эконометрикаэто  самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей,  предназначенная для того, чтобы на базе экономической теории, экономической статистики, математико-статистического инструментария придавать конкретное количественное выражение общим закономерностям, обусловленным экономической теорией  взаимосвязей экономических явлений и процессов.

Переменные, участвующие в  эконометрической модели любого типа, разделяются на следующие типы:

Результирующая (зависимая, эндогенная) переменная   Y

Она характеризует  результат или эффективность  функционирования экономической системы. Значения ее формируются в процессе и внутри функционирования этой системы под воздействием ряда других переменных и факторов, часть из которых поддается регистрации, управлению и планированию.  В регрессионном анализе результирующая переменная играет роль функции, значение которой определяется значениями объясняющих переменных, выполняющих роль аргументов. По своей природе результирующая переменная всегда случайна (стохастична).

Объясняющие (экзогенные,  независимые) переменные  X

Это —  переменные, которые поддаются регистрации  и описывают условия функционирования реальной экономической системы. Они в значительной мере определяют значения результирующих переменных. Обычно часть из них поддается регулированию и управлению. Значение этих переменных могут задаваться вне анализируемой системы. Поэтому их называют экзогенными. Еще их называют факторными признаками. В регрессионном анализе это аргументы результирующей функции Y. По своей природе они могут быть как случайными, так и неслучайными.

Любая эконометрическая модель предназначена  для объяснения значений текущих эндогенных переменных (одной или нескольких) в зависимости от значений заранее определенных переменных.

Переменные, выступающие в системе в роли факторов-аргументов, или объясняющих  переменных называют предопределенными. Множество предопределенных переменных формируется из всех экзогенных переменных  и так называемых лаговых эндогенных переменных, т. е. таких эндогенных переменных, значения которых входят в уравнения анализируемой эконометрической системы измеренными в прошлые моменты времени, а, следовательно, являются уже известными, заданными. 

33. Типы экономических данных, используемых в эконометрических исследованиях.

Пространственные  данные – характеризуют ситуацию по конкретной переменной (или набору переменных), относящейся к пространственно разделенным сходным объектам в один и тот же момент времени. Таковы, например, данные по курсам покупки или продажи наличной валюты в конкретный день по разным обменным пунктам г. Москвы. Другим примером является, скажем, набор сведений (объем производства, количество работников, доход и др.) по разным фирмам в один и тот же момент времени или период.

Временные ряды отражают изменения (динамику) какой-либо переменой на промежутке времени. В качестве примеров временных рядов можно привести ежеквартальные данные по инфляции, данные по средней заработной плате, национальному доходу и денежной эмиссии за несколько и др. 

6. Классификация эконометрических моделей.

Можно выделить три основных класса моделей, которые применяются для анализа и прогнозирования экономических систем

- модели  временных рядов;

- регрессионные  модели с одним уравнением;

- системы  одновременных уравнений.

Модели  временных рядов. Модели временных рядов представляют собой модели зависимости результативного признака  от времени. К ним относятся:

- модели  кривых роста (трендовые модели),

- адаптивные  модели,

- модели  авторегрессии и скользящего  среднего.

С помощью  таких моделей можно решать задачи прогнозирования объема продаж, спроса на продукцию, краткосрочного прогноза процентных ставок и др.

Регрессионные модели с одним  уравнением. В регрессионных моделях зависимая (объясняемая) переменная Y  может быть представлена  в виде  функции     f (X1,  X2,  X3,  … Xk), где -   независимые (объясняющие) переменные, или факторы; k – количество факторов. В качестве зависимой переменной может выступать практически любой показатель, характеризующий, например, деятельность предприятия или курс ценной бумаги.  В зависимости от вида  функции f ( ) модели делятся на линейные и нелинейные. В зависимости от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии).

Системы эконометрических уравнений. Сложные социально-экономические явления иногда  невозможно адекватно описать с помощью только одного соотношения (уравнения). Модели с одним уравнением не отражают взаимосвязей между объясняющими переменными или их связей с другими переменными.  Кроме того, некоторые переменные могут оказывать взаимные воздействия и трудно однозначно определить, какая из них является зависимой, а какая независимой переменной. Поэтому при построении эконометрической модели прибегают к системам уравнений.Для  оценивания систем одновременных уравнений используются специальные методы. Эконометрические методы используются в экономических и технико-экономических исследованиях, работах по управлению (менеджменту).  Каждой области экономических исследований, связанной с анализом эмпирических данных, как правило, соответствуют свои эконометрические модели.  
 

16. Основные этапы построения эконометрических моделей.

На первом постановочном этапе построения эконометрической модели формируются  цели моделирования, определяется набор участвующих в модели факторов, т.е. устанавливается, какие из переменных будут рассматриваться как экзогенные, а какие как эндогенные и лаговые. Пусть У ={у1 у2 …уm}, множество эндогенных переменных; Х = {х1 х2 …хm} – множество экзогенных переменных.

Задачей экзогенного моделирования является получение каждой эндогенной переменной от совокупности экзогенных переменных и возможно отчасти эндогенных.

y1 = f (x1 … xk у2 … уm)

При этом зависимые переменных лаговые.

На 1-ом этапе осуществляется анализ экономической сущности изучаемой модели.

На 2-ом этапе осуществляется предварительный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации, относящейся к природе исходных стат. данных и случайных остаточных составляющих.

На 3-ем этапе выбор общего вида модели: парная, множественная; сколько должно войти факторов; линейная не линейная; а так же определение коэффициентов функции f.

4-ый этап отбор необходимой статистической информации и предварительный анализ данных.

5-ый  этап – идентификация модели, т.е. стат анализ модели, стат оценка независимых параметров модели. Наиболее часто для оценки (нахождения) параметров модели применяют метод наименьших квадратов (МНК)

6-ой этап – сопоставление реальных и модельных значений. Иначе оценка адекватности и точности модели.

По точной и адекватной модели осуществляется прогнозирование. 
 
 
 
 
 
 
 
 
 
 
 

34. Функциональные и стохастические типы связей. Ковариация, корреляция

Рассматривая  зависимости между признаками, необходимо выделить, прежде всего, две категории зависимости: 1) функциональные и 2) корреляционные.

Функциональные  связи характеризуются полным соответствием между изменением факторного признака и изменением результативной величины, и каждому значению признака-фактора соответствуют вполне определенные значения результативного признака. Функциональная зависимость может связывать результативный признак с одним или несколькими факторными признаками. Так, величина начисленной заработной платы при повременной оплате труда зависит от количества отработанных часов.

В корреляционных связях между изменением факторного и результативного признака нет  полного соответствия, воздействие  отдельных факторов проявляется  лишь в среднем при массовом наблюдении фактических данных. Одновременное воздействие на изучаемый признак большого количества самых разнообразных факторов приводит к тому, что одному и тому же значению признака-фактора соответствует целое распределение значений результативного признака, поскольку в каждом конкретном случае прочие факторные признаки могут изменять силу и направленность своего воздействия.

Основная  задача корреляционного анализа заключается в выявлении взаимосвязи между случайными переменными путем точечной и интервальной оценки парных (частных) коэффициентов корреляции, вычисления и проверки значимости множественных коэффициентов корреляции и детерминации. Кроме того, с помощью корреляционного анализа решаются следующие задачи: отбор факторов, оказывающих наиболее существенное влияние на результативный признак, на основании измерения степени связи между ними; обнаружение ранее неизвестных причинных связей. Корреляция непосредственно не выявляет причинных связей между параметрами, но устанавливает численное значение этих связей и достоверность суждений об их наличии.

При проведении корреляционного анализа вся  совокупность данных рассматривается как множество переменных (факторов), каждая из которых содержит n –наблюдений.

При изучении взаимосвязи между двумя факторами  их, как правило, обозначают X= и Y=

ковариация - это статистическая мера взаимодействия двух  переменных.

Ковариация  между двумя переменными  рассчитывается следующим образом:                            

где  - фактические значения случайных переменных x и y,

  .    

Ковариация  зависит от единиц, в которых измеряются переменные .

Поэтому для измерения силы связи между  двумя переменными используется другая статистическая характеристика, называемая  коэффициентом корреляции.

Коэффициент парной корреляции

Для двух переменных коэффициент парной корреляции определяется следующим образом:

=

где - оценки дисперсий величин . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Анализ линейной стат-кой связи экономических данных, корреляция, вычисление коэф-в корреляции. Проверка значимости

Большинство эконом. объектов находятся во всеохватывающей  взаимосвязи. Наилучшим аппаратом  явл-ся аппарат корреляционно-регрессионного анализа. Существует 2 вида зависимостей между эконом. переменными: 1) функциональная; 2) стохастическая (вероятностная). При функц-ой связи – каждому значению одной величины ставят в соответствие опр. значение другой. Такие встречаются редко. Как правило, по значению одной величины можно предсказать с опр. вероятностью значение другой (или найти мат. ожидание). Эта связь называется вероятностной, иногда применяют название «корреляционная зависимость». Между понятиями «корреляция» и «регрессия» существует связь и в то же время они различны. Корреляция позволяет установить тесноту и направление связи между переменными (коэф-ми корреляции). Регрессия определяет форму зависимости, функцию связи (модель регрессии). Корр. анализ предназначен для изучения характера связи между случ. переменными. Задачи корр. анализа: 1.оценка тесноты связи; 2. определение направления связи; 3. выбор ведущих факторов; 4. опр-е ранее неизвестных причинных связей. Виды корреляции: 1. по числу переменных: частная, парная и множественная; 2. по виду связей: линейная и нелинейная; 3. по направлению связи: прямая и обратная. Для решения задач корр. анализа применяются 3 коэф-та корреляции: 1. парный, 2. множественный, 3. частный.

Коэф-т  парной линейной корреляции: . Свойства: 1) rx,y находится в инт-ле (-1;1); 2) rx,y>0 – связь прямая, rx,y<0 – связь обратная; 3) - связь тесная, - связь слабая. Для оценки стат. значимости коэф-та парной корреляции применяют t-критерий Стьюдента: n – количество данных в имеющихся совокупностях. Если tтабл<t, то коэф-т корреляции можно считать статистически значимым.

Коэффициент множественной корреляции. Корреляционная матрица не дает ответов на все вопросы, интересующие нас, для данной совокупности переменных. Возникают 2 дополнительные задачи: 1) как связана интересующая нас величина со всей совокупностью имеющихся факторов; 2) какой будет связь двух переменных при фиксировании или исключении влияния др. переменных. Для решения 1-ой задачи применяют коэф-т множественной корреляции: - определитель матрицы коэф-ов парной корреляции, Rjj – алгебраическое дополнение к элементу этой матрицы, стоящей на пересечении j-ой строки и j-ого столбца. Практическую зависимость имеет R2 – коэф-т детерминации, показывает, какая доля случайных колебаний одной величины обусловлена случайными колебаниями другой величины. Свойства: 1) R2 принадлежит интервалу (0;1); 2) - связь тесная.

Информация о работе Шпаргалкапо "Эконометрике"