Автор работы: Пользователь скрыл имя, 12 Октября 2011 в 18:51, курсовая работа
Можливості практичного застосування моделі міжгалузевого балансу в традиційній її постановці досить широкі. Підтвердженням цього може служити регулярна розробка звітних міжгалузевих балансів (МГБ) як у країнах із централізованною економікою, так і в країнах з розвиненою ринковою економікою. Серед останніх міжгалузеві дослідження особливо розвинені в Японії, де досягнуто оптимальне співвідношення між державно-монополістичним і приватним капіталом.
Вступ
1.Принципова схема міжгалузевого балансу
2.Економіко-математична модель міжгалузевого балансу
3.Міжгалузеві балансові моделі в аналізі економічних показників
4. Застосування балансових моделей у задачах маркетингу
5. Аналіз моделей міжгалузевого балансу
5.1. Дослідження моделі "витрати-випуск" Леонтьєва
5.2. Дослідження моделі міжгалузевого балансу витрат праці
5.3. Дослідження моделі Неймана
5.4. Дослідження моделі Солоу
Висновки
Література
Xj
По-друге, розглядаючи МГБ по рядках для кожної галузі-виробника, бачимо, що валова продукція будь-якої галузі дорівнює сумі матеріальних витрат галузей, які споживають її продукцію, і кінцевої продукції даної галузі:
Xi
Підсумовуючи за j систему рівнянь
Аналогічно, підсумовуючи за i систему рівнянь
Це
рівняння показує, що в міжгалузевому
балансі виконується принцип
еквівалентності матеріального
та вартісного складу національного доходу.
2.Економіко-математична
модель міжгалузевого
балансу
Основу інформаційного забезпечення моделі міжгалузевого балансу становить технологічна матриця, що містить коефіцієнти прямих матеріальних витрат на виробництво одиниці продукції. Ця матриця є базою економіко-математичної моделі міжгалузевого балансу.
Припускається гіпотеза, згідно з якою для виробництва одиниці продукції в j-й галузі необхідна певна кількість витрат проміжної продукції і-ї галузі, що становить aij, і ця величина не залежить від обсягів виробництва в j-й галузі та є досить стабільною величиною в часі. Величини aij називають коефіцієнтами прямих матеріальних витрат та обчислюють таким чином:
Якщо ввести до розгляду матрицю коефіцієнтів прямих матеріальних витрат А = (аij), вектор-стовпчик валової продукції X та вектор-стовпчик кінцевої продукції Y:
то система рівнянь у матричній формі матиме вигляд
X = AX + Y .
Систему рівнянь, чи у матричній формі, називають економіко-математичною моделлю міжгалузевого балансу (моделлю Леонтьєва, моделлю «витрати — випуск»). За допомогою цієї моделі можна виконати три варіанти обчислень:
Y = (E – A)X,
де Е — одинична матриця n-го порядку;
X = (E – A)–1Y;
У попередніх формулах Е позначає одиничну матрицю n-го порядку, а (Е – А)–1 — матрицю, обернену до матриці (Е – А).
Якщо визначник матриці (Е – А) не дорівнює нулеві, тобто ця матриця не вироджена, тоді існує матриця, обернена до неї. Позначимо цю матрицю через В:
B = (Е – А)–1.
X = BY .
Елементи матриці В позначатимемо через bij , тоді з матричного рівняння для будь-якої і-ї галузі можна отримати співвідношення:
Із співвідношення випливає, що валова продукція постає як зважена сума обсягів кінцевої продукції, ваговими коефіцієнтами тут є bіj, котрі показують, скільки всього необхідно виробити валової продукції і-ї галузі для випуску у сферу кінцевого використання одиниці продукції j-ї галузі. На відміну від коефіцієнтів прямих витрат aij , коефіцієнти bіj називають коефіцієнтами повних матеріальних витрат, і вони включають у себе як прямі, так і опосередковані витрати всіх порядків. Якщо прямі витрати відбивають кількість засобів виробництва, використаних безпосередньо на виготовлення певних обсягів даного продукту, то опосередковані стосуються попередніх стадій виробництва і входять у виробництво продукції не прямо, а через інші (проміжні) засоби виробництва.
Коефіцієнти повних матеріальних витрат bij показують, який обсяг продукції j-ї галузі необхідно виробити, щоб з урахуванням прямих і опосередкованих витрат цієї продукції отримати одиницю кінцевої продукції j-ї галузі.
Коефіцієнти повних матеріальних витрат можна застосовувати, коли необхідно визначити, як вплинуть на валовий випуск певної галузі деякі зміни щодо обсягів випуску кінцевої продукції всіх галузей:
де DXi та DYj — зміни (прирости) обсягів валової й кінцевої продукції відповідно.
Здійснюючи аналіз моделі міжгалузевого балансу, потрібно розглянути основні властивості матриці коефіцієнтів прямих матеріальних витрат А. Ці коефіцієнти за визначенням є невід’ємними, отже, матриця А в цілому є невід’ємною: А ³ 0. Процес відтворення не можна було б здійснити, якщо б для власного відтворення в галузі витрачався більший обсяг продукту, ніж створювався. Звідси очевидно, що діагональні елементи матриці А менші ніж одиниця: aii <1, i = 1, ..., n.
Система рівнянь міжгалузевого балансу відображає реальні економічні процеси, в котрих сенс можуть мати лише невід’ємні значення валових випусків; таким чином, вектор валової продукції складається з невід’ємних компонентів вектора Х, який є невід’ємним вектором: X > 0. Називатимемо невід’ємну матрицю А продуктивною, якщо існує такий невід’ємний вектор Х, що X > AX.
Очевидно, що ця умова означає існування невід’ємного вектора кінцевої продукції Y > 0 для моделі міжгалузевого балансу.
Щоб матриця коефіцієнтів прямих матеріальних витрат А була продуктивною, необхідно і достатньо, аби виконувалася одна з перелічених нижче умов:
Більш простою, але лише достатньою ознакою продуктивності матриці А є обмеження на величину її норми, тобто на величину найбільшої із суми елементів матриці А в кожному стовпчику. Якщо норма матриці А строго менша від одиниці, то ця матриця є продуктивною. Дана умова є лише достатньою, і матриця А може виявитися продуктивною й у разі, якщо її норма буде більшою за одиницю.
Найбільший за модулем корінь характеристичного рівняння, наведеного в третій умові продуктивності матриці А (позначимо його через l*), може слугувати за оцінку загального рівня коефіцієнтів прямих матеріальних витрат, а отже, величина (1 – l*) характеризує залишок після витрат, тобто продуктивність. Чим більшим є (1 – l*), тим більшими є можливості досягнення інших цілей, окрім поточного виробничого процесу. Іншими словами, чим вищим є загальний рівень коефіцієнтів матриці А, тим більшим — максимальне за модулем власне значення (l* ) і нижчим — рівень продуктивності, і навпаки, чим нижчий загальний рівень коефіцієнтів матриці А, тим меншим є максимальне по модулю власне значення (l* ) і вищою продуктивність.
Проаналізуймо матрицю коефіцієнтів повних матеріальних витрат, тобто матрицю В = (Е – А)–1. Елемент цієї матриці bij показує, скільки всього необхідно виробити продукції і-ї галузі, щоб одержати одиницю кінцевої продукції j-ї галузі.
Дамо інше означення коефіцієнта повних матеріальних витрат з огляду на те, що окрім прямих витрат існують опосередковані витрати тієї чи іншої продукції для виробництва продукції даної галузі. Розгляньмо для прикладу формування витрат електроенергії на випуск стального прокату, обмежуючись технологічним ланцюжком «руда—чавун—сталь—прокат». Витрати електроенергії для отримання прокату зі сталі називатимемо прямими витратами, ті самі витрати для отримання сталі з чавуну — опосередненими витратами 1-го порядку, а витрати електроенергії для отримання чавуну з руди — опосередкованими витратами електроенергії на випуск сталевого прокату 2-го порядку тощо. Отже, можна дати таке означення:
Коефіцієнтом квазіповних матеріальних витрат cij називають суму прямих і опосередкованих витрат продукції і-ї галузі для виробництва одиниці продукції j-ї галузі через проміжні продукти на всіх попередніх стадіях виробництва. Якщо коефіцієнти опосередкованих матеріальних витрат k-го порядку позначати через , то має місце формула:
a
якщо ввести до розгляду
З огляду на змістовну суть коефіцієнтів опосередкованих матеріальних витрат можна записати такі математичні співвідношення:
за використання котрих матрична формула набирає вигляду
Якщо матриця коефіцієнтів прямих матеріальних витрат А є продуктивною, то з другої умови продуктивності існує матриця В = (Е – А)–1, яка є сумою збіжного матричного ряду:
Порівнюючи вирази дістанемо:
В = Е + С,
або в по елементному записі:
Це
визначає економічний сенс, що пояснює
відмінність між коефіцієнтами (елементами)
матриць В та С: на відміну від
коефіцієнтів матриці С, що враховують
лише витрати на виробництво продукції,
коефіцієнти матриці В включають у
себе, окрім витрат, також одиницю кінцевої
продукції, котра виходить за сферу виробництва.
3.
Міжгалузеві балансові
моделі в аналізі економічних
показників
Різноманітні
модифікації моделі міжгалузевого
балансу виробництва й
Важливими аналітичними можливостями даного методу є, зокрема, визначення прямих і повних витрат праці на одиницю продукції та розроблення на підставі цього балансових продуктово-трудових моделей; вихідною моделлю тут слугує звітний між продуктовий баланс у натуральному вираженні.