Автор работы: Пользователь скрыл имя, 19 Марта 2012 в 07:43, реферат
Одним из направлений совершенствования анализа хозяйственной деятельности является внедрение экономико-математических методов и современных ЭВМ. Их применение повышает эффективность экономического анализа за счет расширения факторов, обоснования принимаемых управленческих решений, выбора оптимального варианта использования хозяйственных ресурсов, выявления и мобилизации резервов повышения эффективности производства.
|
Если добавление последующих факторов не улучшает оценочные показатели, а иногда и ухудшает их, необходимо остановиться на том шаге, где показатели наиболее оптимальны.
Результаты шагового анализа представлены в Табл. 1.8. свидетельствуют о том, что сложившиеся взаимосвязи наиболее полно описывает двухфакторная модель, полученная на втором шаге: у = У = -3,085 = 0,0774 Х1 + 0,0234 Х3.
Статистический анализ данного уравнения регрессии подтверждает, что оно значимо: фактическое значение F-критерия Фишера равно 166,7, что значительно превышает Fтабл. = 3,25. Табличное значение F-критерия находится по заданной вероятности (р = 0,95) и числе степеней свободы для столбца таблицы (m – 1), где m – число параметров уравнения регрессии, включая свободный член, и для строки таблицы (n – m), где n – число наблюдений. Например F-табличное находится на пересечении столбца 2 (3 – 1) и строки 37 (40 – 3) и равно 3,25 (Табл. 1.9.).
Коэффициент множественной корреляции, равный 0,9488, свидетельствует о тесной взаимосвязи между фондоотдачей и удельным весом активной части основных фондов, а также уровнем использования производственной мощности. Величина коэффициента множественной детерминации 0,9001 свидетельствует о том, что изменение детерминации на 90,01% зависит от изменения учтенных факторов.
Параметры уравнения регрессии интерпретируется следующим образом: коэффициент регрессии при Х1 (0,0774) показывает, что увеличение удельного веса машин и оборудования в общей стоимости основных производственных фондов на 1% ведет к росту фондоотдачи на 7,74 копейки. Повышение уровня загрузки мощностей на 1% поднимает фондоотдачу на 2,34 копейки.
Число степеней свободы (n – 1) | p = 0.05 | р = 0.01 | Число степеней | р = 0,05 | р = 0,01 |
1 | 12,69 | 63,655 | 21 | 2,078 | 2,832 |
|
В случае обратной связи, т.е. при уменьшении изучаемой функции в связи с ростом фактора-аргумента, коэффициент регрессии имеет знак «минус».
Свободный член уравнения ао = -3,085 экономически не интерпретируется. Он определяет положение начальной точки линии регрессии в системе координат. Численное значение коэффициентов эластичности отражает, на сколько процентов изменится функция при изменении данного фактора на 1% (имеется в в иду относительный прирост, а не абсолютный) приведет к росту фондоотдачи на 1,65%; улучшение уровня использования мощности на 1% повысит фондоотдачу на 1,3%.
По абсолютной величине бета-коэффициентов можно судить о том, в какой последовательности находятся факторы по реальной возможности улучшения функции. Для нашего примера последовательность переменных выглядит следующим образом:
Номер переменной | 1 | 2 | 3 |
Бета-коэффициенты | 0,584 | 0,382 | 0,009 |
Отношение Дарбина (коэффициент Дарбина – Уотсона) равно 1,215. Значит, в рядах динамики имеется автокорреляция.
Заключительную матрицу данных полностью характеризуют соответствующие заготовки (по столбцам):
1. У – фактическое.
2. У – расчетное.
3. Отклонение (Уфакт – Урасч).
4. Доверительные интервалы (границы, выход за пределы которых имеет незначительную вероятность).
Для устранения автокорреляции модель пересчитана по приростным величинам. В результате получено следующее уравнение регрессии: У = -0,0079 + 0,0345; Х3 + 0,0475 Х1. Оно значимо: величина F-критерия равна 178,3. Коэффициент Дарбина составляет 2,48, т.е. близок к 2, что говорит об отсутствии автокорреляции. Коэффициент множественной корреляции (0,9518) выше, чем рассчитанный в первом случае. Величина коэффициента множественной детерминации также выше (0,9060). В окончательном виде уравнение регрессии интерпретируется таким образом: повышение уровня загрузки (производственной мощности) на 1% приведут к росту фондоотдачи на 3,45 копейки, а удельного веса машин и оборудования в общей стоимости основных производственных фондов – на 4,75 копейки.
Справочный материал. Обработка данных при постановлении множественных моделей корреляционно-регрессивной зависимости производится на ЭВМ по типовой программе.
Исходные данные должны быть достоверны, экономически интерпретируемы, количественно соизмеримы. Расчеты оформляются в виде таблице, в которой первая графа отражает число наблюдений n, вторая (у) – результативный показатель, каждая следующая (х) – факторы в любом порядке, так как факторы машина вводит в процессе шагового анализа по значимости критерия.
При заполнении таблицы исходных данных следует указывать одинаковое количество знаков после запятой в пределах одной графы. Для предотвращения ошибок необходимо использовать данные с возможно большим числом значащих цифр (не менее 5). Процентные отношения требуется давать с точностью до 0,001.
В таблице 1.10. приведены значения F-критерия для р = 0,95 в зависимости от числа степеней свободы: (m–1) – для столбца и (n–m) – для строки, где m – число параметров уравнения регрессии, включая свободный член; n – число наблюдений.
m-1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
10 | 4,96 | 4,10 | 3,71 | 3,48 | 3,33 | 3,22 | 3,14 | 3,07 | 3,02 | 2,97 |
|
МЕТОД ДИСКОНТИРОВАНИЯ.
Дисконтирование – это процесс пересчета будущей стоимости капитала, денежных потоков или чистого дохода в настоящую. Ставка по которой производится дисконтирование, называется ставкой дисконтирования (ставкой дисконта).
Основная посылка, лежащая в основе понятия дисконтированного потока реальных денег, состоит в том, что деньги имеют временную цену, т. е. сумма денег, имеющаяся в наличии в настоящее время, обладает большой ценностью, чем такая же сумма в будущем. Эта разница может быть выражена как процентная ставка (р), характеризующая относительные изменения за определенный период (обычно равный году). Предположим, что Ф(t) – номинальная цена будущего потока реальных денег в году t и Ф(0) – цена этого ожидаемого притока или оттока в настоящее время (текущая цена). Тогда (предполагая, что р – постоянная величина)
.
Смысл проведения расчетов методом дисконтирования состоит в том, чтобы определить сумму, которую следует заплатить сегодня с тем, чтобы получить планируемую отдачу от инвестиций в будущем.
Для применения метода дисконтирования об объекте инвестирования необходимо знать следующие исходные данные: величиной инвестиции, планируемые величины денежных потоков или чистого дохода, норма дисконтирования, срок проекта.
При расчете денежных притоков и оттоков (кеш-фло) учитывается не только поступления денежных средств от операционной и инвестиционной деятельности, но и потоки от финансовых результатов.
Чистый поток наличности (ЧПН) определяется как разность между притоками и оттоками наличности от операционной (производственной) и инвестиционной деятельности минус издержки по финансированию проекта.
Чистый дисконтированный доход (ЧДД) определяется как сумма ЧПН за расчетный период.
Пример расчета куммулятивного ЧДД приведен в приложении 1. Здесь куммулятивный чистый поток реальных денег (строка 9) рассчитывается сложением куммулятивного чистого потока реальных денег за предыдущий период и чистого потока реальных денег за отчетный год. Например, куммулятивный чистый поток реальных денег в 2002 (5-м) году равен – 8300 млн. руб. (-10000 + 1700). ЧДД (строка 10)рассчитывается по формуле ЧД = строка 8 / , где n – год с момента инвестирования, за который рассчитывается ЧДД. Куммулятивный ЧДД (строка 11) рассчитывается так же, как и куммулятивный чистый поток реальных денег.
Коэффициент дисконтирования для приведения чистых денежных потоков к начальному периоду определяется по формуле
где Д – ставка дисконтирования (норма дисконта); t – год, за который дисконтируется чистый доход, начиная с момента инвестирования.
Значение коэффициентов дисконтирования можно также получить из специальных таблиц дисконтированных величин.
Норма дисконта отражать прибыль инвестора, которую он мог бы получить при инвестициях в другой проект. Она является минимальной нормой прибыли, ниже которой инвестор счел бы свои вложения не выгодными.
ЧДД характеризует интегральный эффект от реализации проекта и определяется как величина, полученная дисконтированием разницы между всеми готовыми оттоками и притоками реальных денег, накапливаемых в течении горизонта расчета проекта Т (при постоянной ставке процента отдельно для каждого года):
,
где – чистые потоки наличности в годы t = 1,2,3,…,T.
Формулу для расчета ЧДД можно представить в следующем виде:
ЧДД = П(0) + П(1) ∙ К1 + П(2) ∙ К2 + … + П(Т) ∙ Кt.
Чистый дисконтированный доход как критерий для оценки эффективности инвестиций достаточно корректен и экономически обоснован. Во-первых, ЧДД учитывает изменение стоимости денег во времени. Во-вторых, ЧДД зависит только от прогнозируемого чистого денежного потока и альтернативной стоимости капитала. В-третьих, ЧДД имеет свойство аддитивности, т. е. ЧДД нескольких инвестиционных проектов можно складывать, так как все они выражены в сегодняшних деньгах.
ОПТИМИЗАЦИОННЫЕ МЕТОДЫ АНАЛИЗА И ПРИНЯТИЯ РЕШЕНИЯ В ЭКОНОМИКЕ.
Многие задачи, с которыми приходится сталкивается экономисту в повседневной практике при анализе хозяйственной деятельности предприятий, многовариантны. Так как не все варианты одинаково хороши, среди множества возможных приходится отыскивать оптимальный. Значительная часть подобных задач на протяжении долгого времени решалась исходя из здравого смысла и опыта. При этом не было никакой уверенности, что найденный вариант является наилучшим.
В современных условиях даже не значительные ошибки могут привести к огромным потерям. В связи с этим возникла необходимость привлечения к анализу и синтезу экономических систем оптимизационных экономико-математических методов и ЭВМ, что создает основу для принятия научно обоснованных решений. Такие методы объединяют в одну группу под общим названием «оптимизационные методы анализа и принятия решения в экономике».
Чтобы решить экономическую задачу математическими методами, прежде всего необходимо построить адекватную ей математическую модель, т.е. формализовать цель и условия задачи в виде математических функций, уравнений и (или) неравенств.
В общем случае математическая модель оптимизационной задачи имеет вид:
max (min) : Z = Z(x) (1.1.)
при ограничениях
, (1.2)
где R – отношения равенства, меньше или больше.
Если целевая функция (1.1) и функции, входящие в систему ограничений (1.2.), линейны относительно входящих в задачу неизвестных, такая задача называется задачей линейного программирования. Если же целевая функция (1.1.) или система ограничений (1.2.) не линейна, такая задача называется задачей линейного программирования.
В основном, на практике, задачи нелинейного программирования путем линеаризации сводятся к задаче линейного программирования. Особый практический интерес среди задач линейного программирования представляют задачи динамического программирования, которые из-за своей многоэтапности нельзя линеаризовать. Поэтому мы рассмотрим только эти два вида оптимизационных моделей, для которых в настоящее время имеется хорошее математическое и программное обеспечение.
Модели и методы решения задачи линейного программирования. Среди оптимизационных моделей и методов, используемых в теории экономического анализа, наиболее широкое распространение получили модели линейного программирования, которые решаются с помощью универсального приема –симплексного метода. Для современных ПЭВМ имеется ряд пакетов прикладных программ, которые позволяют решать любые задачи линейного программирования достаточно большой размерности. Одновременно с решением исходной задачи указанные пакеты прикладных программ могут решать двойственную задачу, решение которой позволяет проводить полный экономический анализ результатов решения исходной задачи.
Решение задачи линейного программирования на ПЭВМ рассмотрим на примере задачи об оптимальном раскрое материалов. По результатам решения проведем полный экономико-математический анализ с использованием теории двойственности.
Пусть имеется 200 кг полотна шириной 86 см и 300 кг - шириной 89 см. Из него необходимо раскроить и сшить мужские куртки 44, 46, 52 и 54 размеров. Они должны быть изготовлены
в следующем соотношении к размерам: 44 - 25,38%; 46 27,88%; 52 - 24,54%; 54 - 25,54%. Итого - 100%.
Общий расход полотна, а также отходы, получаемые при рас
крое полотна, приведены в табл. 1.12 и 1.13.
Количество курток, которые выпускало предприятие в течение месяца, показано в табл. 1.14.
Необходимо определить насколько рациональным оказался раскрой, а также какие размеры изделий целесообразнее раскраивать из полотна указанной ширины, чтобы сократить отходы.
Ширина полотна, см. | Размер курток | |||||
44 | 46 | 52 | 54 | |||
86
89 | 520,27 | 553,5 | 597,4 | 605,6 |
Ширина полотна, см. | Размер курток | |||||
44 | 46 | 52 | 54 | |||
86
89 | 66,27 | 75,5 | 78,4 | 85,6 |
Информация о работе Математические методы в экономическом анализе