Автор работы: Пользователь скрыл имя, 19 Марта 2012 в 07:43, реферат
Одним из направлений совершенствования анализа хозяйственной деятельности является внедрение экономико-математических методов и современных ЭВМ. Их применение повышает эффективность экономического анализа за счет расширения факторов, обоснования принимаемых управленческих решений, выбора оптимального варианта использования хозяйственных ресурсов, выявления и мобилизации резервов повышения эффективности производства.
|
Для оценки колеблемости показателей необходимы их статистические характеристики (Табл. 1.4.).
Данные таблицы показывают, что незначительным колебаниям подвержены факторы Х3 и Х1; средняя колеблемость присуща функции Y, значительная – фактору Х2. Однако коэффициенты вариации показателей не превышают 33%, что свидетельствует об однородности исходной информации.
Шифр показа-теля | Среднее | Дисперсия | Стандартное отклонение | Асимме-трия | Эксцесс | Вариа- |
У1 | 1,641 | 0,06456 | 0,25409 | -0,43878 | -0,72032 | 15,484 |
|
Коэффициенты асимметрии говорят о правосторонней асимметрии распределения рядов Х1 и Х3 и о левостороннем распределении рядов Х2 и У.
Величина эксцесса для всех показателей не превышает 3, что подтверждает низковершинное распределение вариационных рядов. Указанные коэффициенты интерпретируются геометрически.
Далее анализируется матрица коэффициентов парной корреляции (табл. 1.5.).
Шифр показателя | У | Х1 | Х2 | Х3 |
У | 1,0000 | 1,0000 | 1,0000 | 1,0000 |
|
В данном примере наиболее тесная связь наблюдается между показателями фондоотдачи (У), идеального веса активной части фондов (Х1) и уровня загрузки производственной мощности (Х3). Парные коэффициенты корреляции соответственно составили 0,937778 и 0,92272.
Расчет парных коэффициентов корреляции выявил слабую связь фондоотдачи с электровооруженностью труда Х2 – 0,09361.
Гипотеза о наличии мультиколлинеарности отвергается, т. е. все показатели относительно независимы.
Для рассматриваемого примера вектор коэффициентов множественной детерминации равен: У = 0,9002; Х1 = 0,9043; Х2 = 0,0100; Х3 = 0,8820. Вектор интерпретируется следующим образом: изменение (вариация) функции (У) на 90,02% зависит от изменения избранных факторов-аргументов; фактора Х1 – на 90,43% от изменения функции (У) и остальных факторов и т. д.
В таблице 1.6. приведены частные коэффициенты корреляции. Они показывают связь каждой пары факторов в чистом виде при неизменном значении остальных параметров.
Шифр показателя | У | Х1 | Х2 | Х3 |
У | 1,0000 | 1,0000 | 1,0000 | 1,0000 |
|
Частные коэффициенты корреляции ниже парных. Это говорит о том, что чистое влияние факторов слабее, чем влияние оказываемое отдельными факторами во взаимодействии с остальными.
Статистическая значимость, надежность связи, выраженная частными коэффициентами корреляции, проверяется по t-критерию Стьюдента путем сравнения расчетного значения с табличными при заданной степени точности (Табл. 1.7.).
Шифр показателя | У | Х1 | Х2 | Х3 |
А | 1 | 2 | 3 | 4 |
У | 1,0000 | 1,0000 | 1,0000 | 1,0000 |
Обычно в практике экономических расчетов степень точности берется равной 5%, что соответствует вероятности р = 0,05. В таблице приведены критические значения t-критерия Стьюдента для вероятности р = 0,05 и 0,01 при различном числе степеней свободы, которые определяются как (n–1), где n – число наблюдений.
В нашем примере при числе степеней свободы 40 – 1 = 39 табличное значение tтабл. = 2,021. Расчетные значения t-критерия (первая графа таблицы) для факторов Х1 и Х3 оказались выше табличных, что свидетельствует о значимости этих факторов для анализируемой функции. Фактор Х2 как незначимый для функции должен быть исключен из дальнейших расчетов.
Далее на ЭВМ проводится шаговый анализ с постепенным включением в модель избранных факторов по критерию значимости. На каждом шаге рассматриваются уравнения регрессии, коэффициенты корреляции и детерминации, F-критерий, стандартная ошибка оценки и другие показатели. После каждого шага перечисленные оценочные показатели сравниваются с рассчитанными на предыдущем шаге. Уравнение регрессии будет тем точнее, чем ниже величина стандартной ошибки (табл. 1.8.).
№ шага | Ввод переменной | Уравнение регрессии | Множественные | Отношение | Стандартная | |
Корреляции | Детерми- | |||||
I | X1 | У = -2,481 +0,1242 Х1 | 0.9378 | 0.8797 | 277.2 | 0.0893 |
II | X3 | У = -3,085+0,077 Х1 + | 0.9488 | 0.9001 | 166.7 | 0.0824 |
III | X2 | У = -3,091+0,0773 Х1+ | 0.9488 | 0.9002 | 108.3 | 0.0835 |
Информация о работе Математические методы в экономическом анализе