Автор работы: Пользователь скрыл имя, 20 Февраля 2012 в 09:43, курсовая работа
Целью данной работы является анализ теоретических основ сетевого моделирования и метода критического пути.
При написании данной работы использовалась литература, интернет-источники и статьи из периодических изданий.
Введение 3
1. Сетевое моделирование 5
1.1. Определение сетевого моделирования 5
1.2. Основные понятия сетевого моделирования 9
1.3. Сетевые модели 11
2. Метод критического пути 23
2.1. Алгоритм определения критического пути 23
2.2. Построение предварительного графика 27
2.3. Определение запасов времени 29
2.4. Правило "красного флажка" 30
Заключение 32
Список литературы 33
Сетевая модель может быть представлена:
1) сетевым графиком
2) в табличной форме
3) в матричной форме
4) в форме диаграммы на шкале времени
Как будет показано ниже, переход от одной формы представления к другой не составляет большого труда.
Преимущество сетевых графиков и временных диаграмм перед табличной и матричной формами представления состоит в их наглядности. Однако это преимущество исчезает прямо пропорционально тому, как увеличиваются размеры сетевой модели. Для реальных задач сетевого моделирования, в которых речь идет о тысячах работ и событий, вычерчивание сетевых графиков и диаграмм теряет всякий смысл.
Преимущество табличной и матри
Сетевым графиком называется полное графическое отображение структуры сетевой модели на плоскости.
Если сетевым графиком на плоскости отображается сетевая модель типа АоА, то однозначное представление должны получить все работы и все события модели. Однако структура сетевого графика модели АоА может быть более избыточна, чем структура самой отображаемой сетевой модели. Дело в том, что по правилам построения сетевого графика для удобства его анализа необходимо, чтобы два события были соединены только единственной работой, что в принципе не соответствует реальным обстоятельствам в окружающей нас действительности. Поэтому принято вводить в структуру сетевого графика элемент, которого нет ни в действительности, ни в сетевой модели. Этот элемент называется фиктивной работой. Таким образом, структура сетевого графика образуется из трех типов элементов (в отличие от структуры сетевой модели, где только два типа элементов):
Графически события изображаются кружками, разделенными на три равных сегмента (радиусами под углом в 120°); работы изображаются сплошными линиями со стрелками на конце, ориентированными слева направо; фиктивные работы изображаются пунктирными линиями со стрелками на конце, ориентированными слева направо. Пример сетевого графика модели АоА представлен ниже на рисунке 1.
Отметим, что индексация работ производится рядом с соответствующими стрелками; фиктивные работы не индексируются; индексы событий проставляются в нижнем сегменте соответствующего кружка. Заполнение остальных сегментов рассматривается ниже.
Если сетевым графиком отображается модель типа AoN, то избыточности структуры удается избежать. Здесь нет необходимости вводить в качестве дополнительного структурного элемента фиктивные работы, поскольку отсутствуют те структурные элементы, которые они призваны обслуживать, а именно – события. В сетевом графике модели типа AoN есть только узлы (или вершины), которые обозначают работы и дуги (сплошные линии со стрелками, ориентированными слева направо), которые обозначают отношения предшествования-следования работ. Никаких событий и никаких фиктивных работ! Заметим, что в наиболее известной программе по проектному управлению Microsoft Project реализуется именно этот тип модели.
«Здесь узлы сети, соответствующие работам, принято изображать прямоугольниками, поделенными на 5 секторов. В центральном секторе проставляется индекс (или записывается наименование работы). Заполнение остальных секторов рассматривается ниже.»6 Пример сетевого графика для модели типа AoN представлен ниже на рисунке 2.
Рисунок 2. Пример сетевого графика модели
типа АоN.
В табличной форме сетевая модель задается множеством {A, A(IP)}, где А – это множество индексов работ, а A(IP) множество комбинаций работ, непосредственно предшествующих работе А. Для рассматриваемого выше примера табличная форма сетевой модели будет такой, которая представлена в таблице 1.
Таблица 1. Табличная форма сетевой модели.
Матричная форма описания сетевой модели задается в виде отношения между событиями (ei, ej), которое равно 1, если между этими событиями есть работа (либо реальная, либо фиктивная) и 0 – в противном случае. Матричная форма для описания сетевой модели из рассматриваемого выше примера приведена ниже в таблице 2:
События |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
1 |
1 |
1 |
|||||
2 |
1 |
1 |
|||||
3 |
1 |
1 |
1 |
||||
4 |
1 |
1 |
1 |
||||
5 |
1 |
1 |
1 | ||||
6 |
1 |
1 |
1 | ||||
7 |
1 |
1 |
Таблица 2. Пример матричной формы.
Описание сетевой модели в форме временной диаграммы (или графика Ганта) предполагает размещение работ в координатной системе, где по оси абсцисс (X) откладывается время (t), а по оси ординат (Y) – работы. Точкой начала отсчета любой из работ будет момент окончания всех ее предшествующих работ. Если работе не предшествует ничто, то она откладывается от начала временной шкалы, т.е. с самого левого края диаграммы. На рисунке 3 представлен график Ганта для сетевой модели по данным таблице 1 с добавлением информации о продолжительности выполнения работ.
Поскольку в сетевых графиках моделей типа АоА вершины соответствуют событиям, постольку эти элементы структуры обладают свойством “сшивания” предыдущих работ с последующими. Иными словами, любое событие наступает только тогда, когда закончены все предшествующие ему работы. С другой стороны, оно является предпосылкой для начала следующих за ним работ. Событие не имеет продолжительности и наступает мгновенно. В связи с этим предъявляются особые требования к его определению.
Так, каждое событие, включаемое
в сетевой график, должно быть полно,
четко и всесторонне
Рисунок 3. Пример графика Ганта.
Различаются следующие разновидности событий сетевого графика модели АоА:
Временные параметры (или временные характеристики) сетевой модели являются главными элементами аналитической системы проектного управления. Именно для их определения и последующего улучшения выполняется вся подготовительная, вспомогательная работа по составлению сетевой модели проекта и ее последующей оптимизации.
Различают следующие временные параметры:
Продолжительность работы (ti) – календарное время, которое занимает выполнение работы.
Раннее время начала работы (ESTi) – наиболее ранний из возможных сроков начала выполнения работы.
Раннее время окончания работы (EFTi) – равно раннему времени начала работы плюс ее продолжительность.
Позднее время окончания работы (LFTi) – наиболее поздний из допустимых сроков окончания работы.
Позднее время начала работы (LSTi) – равно позднему времени окончания работы минус ее продолжительность.
Раннее время наступления события (EETj) – характеризует наиболее ранний из возможных сроков свершения того или иного события. Поскольку каждое событие является результатом свершения одной или нескольких работ, а те в свою очередь следуют за какими-либо предшествующими событиями, то срок его наступления определяется величиной наиболее длительного отрезка пути от исходного события до рассматриваемого.
Позднее время наступления события (LETj) – характеризует наиболее поздний из допустимых сроков совершения того или иного события. Если установлен срок наступления завершающего события, являющегося результатом всего комплекса проводимых работ, то каждое промежуточное событие должно наступить не позже определенного срока. Этот срок и является предельно допускаемым сроком наступления события.
Любая последовательность непосредственно следующих друг за другом работ в сетевой модели называется путем. Путей в сетевой модели может быть очень много, но при этом пути, связывающие исходное и завершающее события сетевой модели, называются полными, а все остальные – неполными. Сумма продолжительностей выполнения работ, составляющих тот или иной путь, называется продолжительностью этого пути.
Самый продолжительный из всех полных путей называется критическим путем сетевой модели. Таким образом, продолжительность критического пути равна сумме продолжительностей всех работ, составляющих этот путь.
Работы, лежащие на критическом пути, называются критическими работами, а события – критическими событиями.
Уже одного определения критического пути сетевой модели проекта достаточно для организации управления всем комплексом работ. Жестко контролируя календарные сроки выполнения критических работ, можно в итоге избежать потерь. У работ, не находящихся на критическом пути, как правило, имеются резервы времени, позволяющие на некоторое время откладывать их выполнение, если это необходимо.
Резерв времени наступления события – это разница между поздним и ранним сроками наступления этого события.
Полный резерв времени выполнения работы (TFi) – это максимально возможный запас времени для выполнения данной работы сверх продолжительности самой работы при условии, что в результате такой задержки конечное для данной работы событие наступит не позднее, чем в свой поздний срок.
Свободный резерв времени выполнения работы (FFi) – это запас времени, которым можно располагать при выполнении данной работы в предположении, что предшествующее и последующее события этой работы наступают в свои самые ранние сроки.
Независимый резерв времени выполнения работы (IFi) – это запас времени, на который можно отложить начало выполнения работы без риска повлиять на какие бы то ни было сроки наступления каких-либо событий в модели вообще.
Параметры раннего и позднего времени наступления события используются в маркировке вершин сетевого графика модели типа АоА. В левый сегмент записывается раннее время наступления соответствующего события (ЕETj), а в правый – позднее (LETj), что показано на рисунке 4.
Рисунок 4. Пример маркировки времени
наступления событий
В маркировке вершин сетевого графика модели типа AoN помимо индекса работ используются параметры (см. рисунок 5):
Информация о работе Анализ метода критического пути в сетевом методе планирования проектов