Автор работы: Пользователь скрыл имя, 21 Февраля 2012 в 15:34, курсовая работа
Целью курсовой работы является освоение методики математической обработки результатов геодезических измерений в сетях сгущения при выполнении следующих заданий:
1. вычисление координат дополнительных пунктов, определённых прямой и обратной многократными угловыми засечками;
2. раздельного уравнивания системы ходов полигонометрии второго разряда с одной узловой точкой;
3. уравнивания превышений технического нивелирования по способу полигонов профессора В.В.Попова.
Введение
1. Вычисление координат дополнительного пункта, определяемого прямой многократной засечкой
1.1 Исходные данные
1.2 Составление схемы расположения определяемого и исходных пунктов
1.3 Выбор наилучших вариантов засечки
1.4 Решение наилучших вариантов засечки
1.5 Оценка ожидаемой точности полученных результатов
2. Вычисление координат дополнительного пункта, определенного обратной многократной засечкой
2.1 Общие указания и исходные данные
2.2 Составление схемы расположения определяемого и исходного пунктов
2.3 Выбор наилучших вариантов засечки
2.4 Решение наилучших вариантов засечки
2.5 Оценка ожидаемой точности результатов
3 Уравнивание ходов полигонометрии второго разряда, образующих одну узловую точку
3.1 Общие указания и исходные данные
3.2 Вычисление координат исходных пунктов и дирекционных углов исходных направлений
3.3 Вычисление и уравнивание дирекционного угла узловой стороны
3.4 Вычисление и уравнивание координат узловой точки
3.5 Уравнивание приращений координат и вычисление координат всех точек
4. Уравнивание ходов технического нивелирования способом полигонов профессора В.В. Попова
4.1 Общие указания и исходные данные
4.2 Уравнивание превышений по способу полигонов профессора В.В.Попова
4.3 Вычисление высот точек по ходам, по уравненным превышениям
4.4 Оценка точности полученных результатов
Заключение
Список используемой литерат
Порядок решения задачи:
1. составление схемы расположения определяемого и исходных пунктов
2. выбор наилучших вариантов засечки
3. решение наилучших вариантов засечки
4. оценка ожидаемой точности полученных результатов.
2.2 Составление схемы расположения определяемого и исходного пунктов
Составление схемы я произвела на листе миллиметровой бумаги формата А4. При этом оцифровала её в масштабе 1:10000. По координатам из таблицы 3 нанесла исходные пункты А, В, C, D (приложение Б). Искомый пункт Р нанесла по направлениям (по способу Болотова) на листе кальки формата А4 (приложение В).
2.3 Выбор наилучших вариантов засечки
Для выбора лучших вариантов засечки производятся те же действия, что и при прямой засечке:
- строятся инверсионные треугольники (вершинами этих треугольников будут только конечные точки отрезков ri)
- визуально определяются треугольники с большими площадями, и именно они выбираются для решения обратной засечки.
В моем варианте были выбраны треугольники 3-4-1 и 3-4-2 для решения.
2.4 Решение наилучших вариантов засечки
Вычисление координат дополнительного пункта, определенного обратной многократной засечкой, приведены в табл. 4.
Таблица 4 - Схема для вычислений обратной угловой засечки.
обозначение пунктов | координаты | - | ∆XBC | - | ΔYBC | |
A | XA | YA | αAP | - | tg αAP | - |
β2 | ∆XBC | ctg β2 | ΔYBC | |||
B | XB | YB | αBP | - | tg αBP | - |
β3 | ∆XCA | ctg β3 | ΔYCA | |||
C | XC | YC | - | ∑ | - | ∑ |
P | XP | YP | YP’ | ∆X0 | tg αAP - tg αBP | ΔY0 |
Для решения задачи сначала я определила дирекционный угол направления АР, принятого в качестве главного, по формуле Деламбра:
(5),
далее определяем дирекционный угол следующего направления:
(6).
После того, как определила дирекционные углы направлений АР и ВР, вычислила координаты точки Р по формулам Гаусса:
(7)
(8)
Для контроля вычислений применила формулу:
(9).
В формулах (5-9) обозначения соответствуют схеме, представленной на рисунке 2.
Рисунок 2 – Схема обозначений к вычислениям.
Решение задачи представлено в таблицах 5 и 6.
Таблица 5 – Решение обратной угловой засечки.
Обозначение пунктов | координаты | - | -247,86 | - | 641,35 | |
3 (A) | 6653,66 | 2959,70 | 24148’22” | - | 1,865475 | - |
9550’57” | 699,51 | -0,102443 | 250,50 | |||
4 (B) | 7353,17 | 3210,20 | 33739’19” | - | -0,411042 | - |
18240’19” | -451,65 | 21,427930 | -891,85 | |||
1 (С) | 7150,31 | 3851,55 | - | 0 | - | 0 |
P | 6890,00 | 3400,58 | 3400,58 | -10390,93 | 2,276517 | -19384,02 |
Таблица 6 – Решение обратной угловой засечки.
Обозначение пунктов | координаты | - | -739,31 | - | 606,23 | |
3 (A) | 6653,66 | 2959,70 | 24148’18” | - | 1,865398 | - |
9550’57” | 699,51 | -0,102443 | 250,50 | |||
4 (B) | 7353,17 | 3210,20 | 33739’15” | - | -0,411065 | - |
24146’55” | 39,8 | 0,536601 | -856,73 | |||
2 (C) | 6613,86 | 3816,43 | - | 0 | - | 0 |
P | 6890,01 | 3400,59 | 3400,59 | -656,53 | 2,276463 | -1224,69 |
Координаты в двух вариантах различны, но расхождения не превышают 0,2 м, за окончательные значения координат принимаем их средние значения:
Среднее Х=6890,005
Среднее Y=3400,585.
2.5 Оценка ожидаемой точности результатов
Далее я вычислила среднюю квадратическую ошибку положения определяемого пункта:
(10),
где - средняя квадратическая ошибка измерения углов (10''),
S – расстояния, измеренные по схеме, м,
=, - углы, измеряемые транспортиром по схеме.
Среднюю квадратическую ошибку координат, полученных как средние значения из двух вариантов, вычислила по формуле:
(11).
Из формулы (10) средняя квадратическая ошибка положения определяемого пункта:
Из формулы (11) нашла среднюю квадратическую ошибку координат, полученных как средние значения из двух вариантов:
Итак, в этой задаче было решено два наилучших варианта засечки. Для решения задачи была построена схема расположения определяемого и исходных пунктов, выбраны наилучшие варианты засечки с помощью инверсионных треугольников, решены эти варианты засечки. Координаты пункта Р, полученные в двух вариантах, оказались в допуске и за окончательные значения координат были приняты их средние значения: среднее Х=6890,005 м, среднее Y=3400,585 м.
Вычисления были выполнены со следующими ошибками:
- средняя квадратическая ошибка положения определяемого пункта: mp1=0,036 м и mp2=0,031 м
- средняя квадратическая ошибка координат, полученных как средние значения из двух вариантов: МpСр=0,02 м
уравнивание геодезическая сеть сгущение засечка
3. Уравнивание ходов полигонометрии второго разряда, образующих одну узловую точку
3.1 Общие указания и исходные данные
ПОЛИГОНОМЕТРИЯ (от греч. polygonos - многоугольный и ...метрия), метод определения взаимного положения точек земной поверхности для построения опорной геодезической сети путем измерения длин прямых линий, связывающих эти точки, и горизонтальных углов между ними. Применяется в залесенной и застроенной местности вместо триангуляции.
Наилучший результат получается при совместном уравнивании всех измеренных величин. Число измерений в полигонометрической сети велико, измеренные величины разнородны (углы и расстояния), сеть имеет сложную форму. Строгое уравнивание на практике выполняется чрезвычайно редко, так как представляет собой сложную и трудоёмкую задачу.
Задача уравнивания значительно облегчается при последовательном несовместном уравнивании. При этом сначала уравнивают углы, а затем приращения координат (абсцисс и ординат). Полученные таким образом результаты будут отличаться от результатов строгого уравнивания полигонометрической сети.
Заданием предусмотрено выполнить уравнивание системы ходов раздельным способом.
3.2 Вычисление координат исходных пунктов и дирекционных углов исходных направлений
По данным, изменённым в соответствии с порядковым номером, я вычислила координаты исходных пунктов и дирекционные углы исходных направлений. Вычисление произвела в таблице 7.
Таблица 7 – Данные по исходным пунктам.
пункт | углы | дирекционные углы | Сторона, м | Координаты, м | |||||
| град. | мин. | сек. | град. | мин. | сек. |
| X | Y |
A | 43 | 54 | 55 |
|
|
|
| 2349486,73 | 9475377,12 |
|
|
|
| 144 | 17 | 33 | 3301,47 |
|
|
B | 103 | 52 | 34 |
|
|
|
| 2346805,92 | 9477304,01 |
|
|
|
| 220 | 24 | 59 | 4296,16 |
|
|
C | 32 | 12 | 31 |
|
|
|
| 2343535,03 | 9474518,65 |
|
|
|
| 8 | 12 | 28 | 6013,30 |
|
|
A | 43 | 54 | 55 |
|
|
|
| 2349486,73 | 9475377,12 |
|
|
|
| 144 | 17 | 33 |
|
|
|
Информация о работе Уравнивание геодезических сетей сгущения упрощенными способами