Автор работы: Пользователь скрыл имя, 14 Апреля 2012 в 17:24, дипломная работа
Технология при переводе с греческого (techne) означает искусство, мастерство, умение, а это не что иное, как процессы.
Под процессом следует понимать определенную совокупность действий, направленных нa достижение поставленной цели. Процесс должен определяться выбранной человеком стратегией и реализоваться с помощью совокупности различных средств и методов.
Под технологией материального производства понимают совокупность средств и методов обработки, изготовления, изменения состояния, свойств, формы сырья или материала. Технология изменяет качество или первоначальное состояние материи в целях получения продукта.
Информация является одним из ценнейших ресурсов общества, наряду с такими традиционными материальными видами ресурсов, как нефть, газ, полезные ископаемые и др., а значит, процесс ее переработки по аналогии с процессами переработки материальных ресурсов можно воспринимать как технологию. Тогда справедливо следующее определение.
Информационная технология (ИТ) - совокупность средств и методов сбора, обработки и передачи данных (первичной информации) для получения информации нового качества о состоянии объекта, процесса или явления (информационного продукта).
Раздел 1. ПОНЯТИЕ ИНФОРМАЦИОННОЙ ТЕХНОЛОГИИ_ 3
1.1 Содержание информационной технологии_ 3
1.1.1 Определение информационной технологии_ 3
1.1.2 Инструментарий информационной технологии_ 4
1.1.3 Информационная технология и информационная система 5
1.2 Этапы развития информационных технологий_ 6
1.3 Особенности новых информационных технологий_ 8
1.4 Проблемы использования информационных технологий_ 9
Раздел 2. ВИДЫ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ_ 10
2.1 Общая классификация видов информационных технологий_ 10
2.1.1 Структура управления организацией_ 10
2.1.2 Классификация видов информационных технологий_ 12
2.2 Информационная технология обработки данных_ 16
2.3 Информационная технология управления_ 19
2.4 Автоматизация офисной деятельности_ 21
2.5 Информационная технология поддержки принятия решений_ 25
2.6 Экспертные системы_ 29
2.6.1 Типы экспертных систем_ 30
2.6.2 Виды знаний_ 31
2.6.3 Способы формализованного представления знаний в БЗ_ 32
2.6.4 Области применения ЭС_ 33
Раздел 3. ОРГАНИЗАЦИЯ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ_ 36
3.1 Модели информационных процессов передачи, обработки, накопления данных_ 36
3.1.1 Обобщенная схема технологического процесса обработки информации 36
3.1.2 Сбор и регистрация информации_ 37
3.1.3 Передача информации_ 40
3.1.4 Обработка информации_ 41
3.1.5 Хранение и накопление информации_ 43
3.2 Системный подход к решению функциональных задач и к организации информационных процессов_ 45
Раздел 4. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В РАЗЛИЧНЫХ ОБЛАСТЯХ ДЕЯТЕЛЬНОСТИ_ 48
4.1 Информационные технологии в системах организационного управления 48
5.3.1 ЭВМ при выборе решений в области технологии, организации, планирования и управления производством_ 48
5.3.2 Возможности использования новых информационных технологий в системах организационного управления 49
4.2 Информационные технологии в обучении_ 52
4.3 Автоматизированные системы научных исследований_ 54
4.4 Системы автоматизированного проектирования 55
4.5 Геоинформационные системы и технологии_ 56
Раздел 5. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В РАСПРЕДЕЛЕННЫХ СИСТЕМАХ 59
5.1 Технологии распределенных вычислений (РВ) 59
5.2 Распределенные базы данных_ 61
5.3 Технологии и модели "Клиент-сервер" 63
5.3.1 Модель файлового сервера 64
5.3.2 Модель удаленного доступа к данным_ 65
5.3.3 Модель сервера базы данных_ 67
5.3.4 Модель сервера приложений_ 68
5.4 Технологии объектного связывания данных_ 69
5.5 Технологии реплицирования данных_ 72
Раздел 6. ТЕХНОЛОГИИ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ 75
6.1 Понятие о компьютерном математическом моделировании. 75
6.1.1 Общие сведения о компьютерном математическом моделировании 75
6.1.2 Классификация математических моделей_ 75
6.2 Этапы, цели и средства компьютерного математического моделирования 77
6.2.1 Моделирования случайных процессов 80
6.2.2 Особенности имитационного моделирования производственных систем 81
Раздел 7. ТЕХНОЛОГИИ СОЗДАНИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ_ 83
7.1 Общая характеристика технологии создания программного обеспечения 83
7.2 Современные методы и средства разработки программного обеспечения 87
7.1.1 Современные методы разработки ПО_ 87
7.1.2 Инструментарий технологии программирования 91
7.1.3 Средства для создания приложений_ 91
7.1.4 CASE-технологии_ 94
7.3 Языки и системы программирования 95
7.3.1 Развитие языков программирования 95
7.3.2 Современные системы программирования 99
7.4 Архитектура программных систем_ 101
Основными элементами современного "электронного" учреждения являются автоматизированные рабочие места (АРМы) пользователей, системы редактирования текстов, базы данных и средства управления ими (СУБД), информационно-вычислительные сети, электронная почта, средства печати и копирования документов и др.
Автоматизированное рабочее место (АРМ) - вычислительная система, предназначенная для автоматизации профессиональной деятельности.
Производительность труда при использовании АРМ на рутинных операциях, применяемых при подготовке и передаче документов увеличивается в несколько раз за счет применения специального программного обеспечения.
Примеры функций пользователей - сотрудников, реализуемые на АРМе соответствующего типа являются:
§ подготовка документов, содержащих текстовые, табличные и графические фрагменты на основе анализа доступной информации;
§ хранение и поиск информации;
§ прием/передача документов (или их фрагментов) внутри учреждения и за его пределы;
§ обеспечение режима использования и надежного хранения документов.
Функции АРМов руководителей организации и ее подразделений существенно отличаются от функций АРМ сотрудника (служащего, специалиста).
К основным функциям руководителя относятся: долгосрочное и оперативное планирование работ, общение со смежными подразделениями, проведение рабочих совещаний, выдача поручений и контроль за их выполнением, регистрация и исполнение поручений руководства, оценка деятельности сотрудников, подразделения и организации в целом и другие функции. Большинство этих функций может быть успешно реализовано при наличии соответствующего прикладного программного обеспечения АРМ руководителя.
Таким образом, внедрение информационных технологий в процесс управления организациями не ограничивается только автоматизацией сбора, хранения и представления данных, а распространяется также на анализ информации и поддержку принятия решений. В большинстве случаев решения принимаются на основе математического моделирования технико-экономической ситуации в конкретной предметной области. Рассматриваемое в таком аспекте АРМ руководителя становится усилителем его интеллекта, помогает находить достаточно эффективные (неубыточные) управленческие решения в сложных, динамически изменяющихся ситуациях.
Необходимость в обмене информацией в различных сферах управленческой деятельности, получении новых сведений в результате коллективного обсуждения проблем привели к таким формам общения, как конференции, семинары, совещания.
Практически ни одна серьезная сделка, ни один договор не могут быть заключены без обсуждения на различных уровнях промежуточных результатов, итогов, вариантов решения, заслушивания оппонентов и принятия соответствующих решений. Эта идея была реализована новом виде информационного обслуживания - телеконференции. Участники таких конференций, удаленные друг от друга на сотни и тысячи километров, благодаря современной электронике могут видеть друг друга, обмениваться данными и графической информацией дискутировать в условиях, максимально приближенных к реальной конференции.
Организация телеконференций требует привлечения весьма разнообразной аппаратуры: терминалов, факсимильной связи, телевизионных камер, видеомагнитофонов, компьютеров, модемов, акустической аппаратуры.
Новейшей технологией информационного обслуживания организаций являются создание использование автоматизированных информационных систем интеллектуального типа (экспертные системы, функционирующие в режиме реального времени, ситуационные комнаты, интеллектуальные системы поддержки принятия решения и т.д.).
Создание и совершенствование компьютеров привело и продолжает приводить к созданию новых технологий в различных сферах научной и практической деятельности. Одной из таких сфер стало образование. Нетрадиционные информационные системы, связанные с обучением, называют информационно-обучающими.
Автоматизированная обучающая система (АОС) - комплекс программных, технических и учебно-методических средств, предназначенных для активного индивидуального обучения человека на основе программного управления этим обучением.
Благодаря своим конструктивным и функциональным особенностям современный персональный компьютер находит применение в обучении самым разнообразным дисциплинам и служит базой для создания большого числа новых информационных технологий обучения.
Компьютерная технология повышает интерес к обучению. В настоящее время существует огромное множество обучающих программ по самым разным предметам, ориентированных на самые различные категории учащихся, начиная с детских садов и заканчивая персоналом атомных электростанций.
Типы обучающих программ
Основанием для классификации служат обычно особенности учебной деятельности обучаемых при работе с программами. Обычно выделяют четыре типа обучающих программ:
§ тренировочные и контролирующие;
§ наставнические;
§ имитационные и моделирующие;
§ развивающие игры.
Тренировочные программы предназначены для закрепления умений и навыков. Предполагается, что теоретический материал уже изучен. Эти программы в случайной последовательности предлагают учащемуся вопросы и задачи и подсчитывают количество правильно и неправильно решенных задач (в случае правильного ответа может выдаваться поощряющая реплика, при неправильном ответе можно получить помощь в виде подсказки).
Наставнические программы предлагают ученикам теоретический материал для изучения. Задачи и вопросы служат в этих программах для организации человеко-машинного диалога, для управления ходом обучения. Так, если ответы, даваемые учеником, неверны, программа может "откатиться назад" для повторного изучения теоретического материала.
Программы наставнического типа являются прямыми наследниками средств программированного обучения 60-х годов в том смысле, что основным теоретическим источником современного компьютерного или автоматизированного обучения следует считать программированное обучение. В публикациях зарубежных специалистов и сегодня под термином "программированное обучение" понимают современные компьютерные технологии. Одним из основоположников концепции программированного обучения является американский психолог Б.Ф.Скиннер.
Главным элементом программированного обучения является программа, понимаемая как упорядоченная последовательность рекомендаций (задач), которые передаются с помощью программированного учебника и выполняются обучаемыми. Существует несколько разновидностей программированного обучения.
§ линейное программированное обучение. Линейная программа характеризуется следующими особенностями:
§ разветвленная программа. Разветвленная программа основана выборе одного правильного ответа из нескольких данных, она
Если основой линейной программы является стремление избежать ошибок, то разветвленная программа не направлена на ликвидацию ошибок в процессе обучения: ошибки трактуются как возможность обнаружить недостатки в знаниях обучаемых, а также выяснить, какие проблемы обучаемые уяснили недостаточно. Постепенно (линейное и разветвленное программированное) уступили место смешанным формам.
Существует и продолжает разрабатываться большое количество инструментальных программ такого вида. Общим их недостатком является высокая трудоемкость разработки, затруднения организационного и методического характера при использовании в реальном процессе обучения.
Моделирующие программы основаны на графических иллюстративных возможностях компьютера, с одной стороны, и вычислительных, с другой, и позволяют осуществлять компьютерный эксперимент. Такие программы предоставляют возможность наблюдать на экране дисплея некоторый процесс, влияя на его ход подачей команды с клавиатуры, меняющей значения параметров.
Развивающие игры предоставляют в распоряжение ученика некоторую воображаемую среду, существующий только в компьютере мир, набор каких-то возможностей и средств их реализации. Использование предоставляемых программой средств для реализации возможностей, связанных с изучением мира игры и деятельностью в этом мире, приводит к развитию обучаемого, формированию у него познавательных навыков, самостоятельному открытию им закономерностей, отношений объектов действительности, имеющих значение.
Наибольшее распространение получили обучающие программы первых двух типов в связи с их относительно невысокой сложностью, возможностью унификации при разработке многих блоков программ. Если программы 3-го и 4-го типов требуют большой работы программистов, психологов, специалистов в области изучаемого предмета, педагогов-методистов, то технология создания программ 1-го и 2-го типов сегодня сильно упростилась с появлением инструментальных средств или наполняемых автоматизированных обучающих систем.
В процессе контроля знаний широкое распространение получило компьютерное тестирование. В ряде стран тестирование вытеснило традиционные формы контроля - устные и письменные экзамены и собеседования.
Типы компьютерных тестовых заданий определяются способами однозначного распознавания ответных действий тестируемого в соответствии с моделью знаний.
Учебная мультимедиа и гипермедиа-технология представляет собой развитие технологии программированного обучения, хотя упор делается не на адаптивность обучения и его методическое обоснование, а на внешнюю иллюстративно-наглядную сторону. Современные графические и звуковые возможности компьютера обусловили появление средств гипер- и мультимедиа.
Мультимедиа технология - представление информации в форме видеоизображения с применением мультипликации и звукового сопровождения.
Гипермедиа технология - компьютерное представление данных различного типа, в котором автоматически поддерживаются смысловые связи между выделенными понятиями, объектами или разделами.
Научные исследования в данной области связаны с разработкой технологий создания учебных курсов большего размера на основе возможностей мульти- и гипермедиа. Под управлением компьютера система мультисред может производить в едином представлении объединение текста, графики, звуков, видеообразов и мультипликации. Технология мультимедиа в последнее время широко применяется для создания электронных книг и учебников.
Развитием идей мультимедиа являются технологии компьютерной виртуальной реальности. В этом случае с помощью специальных экранов, датчиков, шлемов, перчаток и т.п. полностью моделируется управление, например, самолетом, так что у обучаемого возникает полная иллюзия того, что он находится в кабине самолета и им управляет.
Автоматизированные системы научных исследований (АСНИ) представляют собой программно-аппаратные комплексы, обрабатывающие данные, поступающие от различного рода экспериментальных установок и измерительных приборов, и на основе их анализа облегчающие обнаружение новых эффектов и закономерностей (рис. 1).
Блок связи с измерительной аппаратурой преобразует к нужному виду информацию, поступающую от измерительной аппаратуры.
В базе данных хранится информация, поступившая из блока связи с измерительной аппаратурой, а также заранее введенная с целью обеспечения работоспособности системы.
Расчетный блок, выполняя программы из пакета прикладных программ, производит все математические расчеты, в которых может возникнуть потребность в ходе научных исследований.
Расчеты могут выполняться как по требованию исследователя, так и блока имитационного моделирования. При этом на основе математических моделей воспроизводится процесс, происходящий во внешней среде.
Экспертная система моделирует рассуждения специалистов данной предметной области. С ее помощью исследователь может классифицировать наблюдаемые явления, диагностировать течение следуемых процессов.
Рис. 4.1 - Типовая структура АСНИ
АСНИ получили широкое распространение в молекулярной химии, минералогии, биохимии, физике элементарных частиц и многих других науках.
Близкими по своей структуре и функциям к системам автоматизации научных исследований оказываются системы автоматизированного проектирования (САПР).
САПР - комплекс программных и аппаратных средств, предназначенных для автоматизации процесса проектирования человеком технических изделий или продуктов интеллектуальной деятельности.
Проектирование новых изделий - основная задача изобретателей конструкторов, протекает в несколько этапов, таких как нормирование замысла, поиск физических принципов, обеспечивающих реализацию замыслов и требуемые значении конструкции, поиск конструктивных решений, их расчет и обоснование, создание опытного образца, разработка технологий промышленного изготовления. Если формирование замысла и поиск физических принципов пока остаются чисто творческими, не поддающимися автоматизации этапами, то при конструировании и расчетах с успехом могут быть применены САПР (рис. 4.2).
База данных, блок имитационного моделирования, расчетный блок и экспертная система выполняют функции, аналогичные функциям соответствующих блоков АСНИ. Вместо блока связи с измерительной аппаратурой в САПР имеется блок формирования заданий. Проектировщик вводит в блок техническое задание на проектирование, в котором указаны цели, которые необходимо достичь при проектировании, и все ограничения, которые нельзя нарушить. Блок подготовки технической документации облегчает создание технической документации для последующего изготовления изделия.
Рис 4.2 - Типовая схема САПР
Аппаратное обеспечение САПР составляет ЭВМ с набором устройств, необходимых для ввода и вывода графической информации (графопостроитель, световое перо, графический планшет и др.).
В настоящее время САПР является неотъемлемым атрибутом крупных конструкторских бюро и проектных организаций, работающих в различных предметных областях. Это важная сфера приложения идей и методов информатики. САПР широко применяется в архитектуре, электротехнике, электронике, машиностроении, авиакосмической технике и др.
Геоинформационные системы (ГИС) и ГИС- технологии объединяют компьютерную картографию и системы управления базами данных. Концепция технологии ГИС состоит в создании многослойной электронной карты, опорный слой которой описывает географию территории, а каждый из остальных слоев - один из аспектов состояния территории. Тем самым ГИС-технологии определяют специфическую область работы с информацией.