Информационные технологии

Автор работы: Пользователь скрыл имя, 14 Апреля 2012 в 17:24, дипломная работа

Краткое описание

Технология при переводе с греческого (techne) означает искусство, мастерство, умение, а это не что иное, как процессы.

Под процессом следует понимать определенную совокупность действий, направленных нa достижение поставленной цели. Процесс должен определяться выбранной человеком стратегией и реализоваться с помощью совокупности различных средств и методов.

Под технологией материального производства понимают совокупность средств и методов обработки, изготовления, изменения состояния, свойств, формы сырья или материала. Технология изменяет качество или первоначальное состояние материи в целях получения продукта.

Информация является одним из ценнейших ресурсов общества, наряду с такими традиционными материальными видами ресурсов, как нефть, газ, полезные ископаемые и др., а значит, процесс ее переработки по аналогии с процессами переработки материальных ресурсов можно воспринимать как технологию. Тогда справедливо следующее определение.

Информационная технология (ИТ) - совокупность средств и методов сбора, обработки и передачи данных (первичной информации) для получения информации нового качества о состоянии объекта, процесса или явления (информационного продукта).

Содержание работы

Раздел 1. ПОНЯТИЕ ИНФОРМАЦИОННОЙ ТЕХНОЛОГИИ_ 3

1.1 Содержание информационной технологии_ 3

1.1.1 Определение информационной технологии_ 3

1.1.2 Инструментарий информационной технологии_ 4

1.1.3 Информационная технология и информационная система 5

1.2 Этапы развития информационных технологий_ 6

1.3 Особенности новых информационных технологий_ 8

1.4 Проблемы использования информационных технологий_ 9

Раздел 2. ВИДЫ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ_ 10

2.1 Общая классификация видов информационных технологий_ 10

2.1.1 Структура управления организацией_ 10

2.1.2 Классификация видов информационных технологий_ 12

2.2 Информационная технология обработки данных_ 16

2.3 Информационная технология управления_ 19

2.4 Автоматизация офисной деятельности_ 21

2.5 Информационная технология поддержки принятия решений_ 25

2.6 Экспертные системы_ 29

2.6.1 Типы экспертных систем_ 30

2.6.2 Виды знаний_ 31

2.6.3 Способы формализованного представления знаний в БЗ_ 32

2.6.4 Области применения ЭС_ 33

Раздел 3. ОРГАНИЗАЦИЯ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ_ 36

3.1 Модели информационных процессов передачи, обработки, накопления данных_ 36

3.1.1 Обобщенная схема технологического процесса обработки информации 36

3.1.2 Сбор и регистрация информации_ 37

3.1.3 Передача информации_ 40

3.1.4 Обработка информации_ 41

3.1.5 Хранение и накопление информации_ 43

3.2 Системный подход к решению функциональных задач и к организации информационных процессов_ 45

Раздел 4. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В РАЗЛИЧНЫХ ОБЛАСТЯХ ДЕЯТЕЛЬНОСТИ_ 48

4.1 Информационные технологии в системах организационного управления 48

5.3.1 ЭВМ при выборе решений в области технологии, организации, планирования и управления производством_ 48

5.3.2 Возможности использования новых информационных технологий в системах организационного управления 49

4.2 Информационные технологии в обучении_ 52

4.3 Автоматизированные системы научных исследований_ 54

4.4 Системы автоматизированного проектирования 55

4.5 Геоинформационные системы и технологии_ 56

Раздел 5. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В РАСПРЕДЕЛЕННЫХ СИСТЕМАХ 59

5.1 Технологии распределенных вычислений (РВ) 59

5.2 Распределенные базы данных_ 61

5.3 Технологии и модели "Клиент-сервер" 63

5.3.1 Модель файлового сервера 64

5.3.2 Модель удаленного доступа к данным_ 65

5.3.3 Модель сервера базы данных_ 67

5.3.4 Модель сервера приложений_ 68

5.4 Технологии объектного связывания данных_ 69

5.5 Технологии реплицирования данных_ 72

Раздел 6. ТЕХНОЛОГИИ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ 75

6.1 Понятие о компьютерном математическом моделировании. 75

6.1.1 Общие сведения о компьютерном математическом моделировании 75

6.1.2 Классификация математических моделей_ 75

6.2 Этапы, цели и средства компьютерного математического моделирования 77

6.2.1 Моделирования случайных процессов 80

6.2.2 Особенности имитационного моделирования производственных систем 81

Раздел 7. ТЕХНОЛОГИИ СОЗДАНИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ_ 83

7.1 Общая характеристика технологии создания программного обеспечения 83

7.2 Современные методы и средства разработки программного обеспечения 87

7.1.1 Современные методы разработки ПО_ 87

7.1.2 Инструментарий технологии программирования 91

7.1.3 Средства для создания приложений_ 91

7.1.4 CASE-технологии_ 94

7.3 Языки и системы программирования 95

7.3.1 Развитие языков программирования 95

7.3.2 Современные системы программирования 99

7.4 Архитектура программных систем_ 101

Содержимое работы - 1 файл

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ.doc

— 569.00 Кб (Скачать файл)

Существует множество типов моделей и способов их классификации, например, по цели использования, области возможных приложений, способу оценки переменных и т. п.

По цели использования модели подразделяются на оптимизационные, связанные с нахождением точек минимума или максимума некоторых показателей (например, управляющие часто хотят знать, какие их действия ведут к максимизации прибыли или минимизации затрат), и описательные, описывающие поведение некоторой системы и не предназначенные для целей управления (оптимизации).

По способу оценки модели классифицируются на детерминированные, использующие оценку переменных одним числом при конкретных значениях исходных данных, и стохастические, оценивающие переменные несколькими параметрами, так как исходные данные заданы вероятностными характеристиками.

Детерминированные модели более популярны, потому что они менее дорогие, их легче строить и использовать. К тому же часто с их помощью получается вполне достаточная информация для принятия решения.

По области возможных приложений модели разбиваются на специализированные, предназначенные для использования только одной системой, и универсальные - для использования несколькими системами.

Специализированные модели более дорогие, они обычно применяются для описания уникальных систем и обладают большей точностью.

В системах поддержки принятия решения база моделей состоит из стратегических, тактических и оперативных моделей, а также математических моделей в виде совокупности модельных блоков, модулей и процедур: используемых как элементы для их построения (см. рис.6).

Стратегические модели используются на высших уровнях управления для установления целей организации, объемов ресурсов, необходимых для их достижения, а также политики приобретения и использования этих ресурсов. Они могут быть также полезны при выборе вариантов размещения предприятий, прогнозировании политики конкурентов и т.п. Для стратегических моделей характерны значительная широта охвата, множество переменных, представление данных в сжатой агрегированной форме. Часто эти данные базируются на внешних источниках и могут иметь субъективный характер. Горизонт плани­рования в стратегических моделях, как правило, измеряется в годах. Эти модели обычно детерминированные, описательные, специализированные для использования на одной определенной фирме.

Тактические модели применяются управляющими (менеджерами) среднего уровня для распределения и контроля использования имеющихся ресурсов. Среди возможных сфер их использования следует указать: финансовое планирование, планирование требований к работникам, планирование увеличения продаж, построение схем компоновки предприятий. Эти модели применимы обычно лишь к отдельным частям фирмы (например, к системе производства и сбыта) и могут также включать в себя агрегированные показатели. Временной горизонт, охватываемый тактическими моделями, - от одного месяца до двух лет. Здесь также могут потребоваться данные из внешних источников, но основное внимание при реализации данных моделей должно быть уделено внутренним данным фирмы. Обычно тактические модели реализуются как детерминированные, оптимизационные и универсальные.

Оперативные модели используются на низших уровнях управления для поддержки принятия оперативных решений с горизонтом, измеряемым днями и неделями. Возможные применения этих моделей включают в себя ведение дебиторских счетов и кредитных расчетов, календарное производственное планирование, управление запасами и т.д. Оперативные модели обычно используют для расчетов внутрифирменные данные. Они, как правило, детерминированные, оптимизационные и универсальные (т.е. могут быть использованы в различных организациях).

Математические модели состоят из совокупности модельных блоков, модулей и процедур, реализующих математические методы. Сюда могут входить процедуры линейного программирования, статистического анализа временных рядов, регрессионного анализа и т.п. - от простейших процедур до сложных ППП.

Пример.

Программный продукт Forecast Expert, также разработанный фирмой Про-Инвест-Консалтинг, представляет собой универсальную систему прикладного прогнозирования. Forecast Expert предназначен для построения прогноза временного ряда. В качестве прогнозируемых могут выступать параметры как сфер производства и обращения - цены мирового рынка, спрос на изделия, объемы закупок комплектующих и производственных запасов при увеличении объема производства, цены комплектующих, параметры технологических процессов, так и финансового рынка - цены покупки и продажи акций, деловая активность участников рынка, объем предложений свободных средств инвесторами и многое другое.

Применение Forecast Expert позволяет проанализировать имеющиеся данные и построить прогноз с указанием границ доверительного интервала (при заданной вероятности прогноза) на период времени. Модель определяет степень влияния сезонных факторов и учитывает их при построении прогноза.

2.6     Экспертные системы

Наибольший прогресс среди компьютерных информационных систем отмечен в области разработки экспертных систем (ЭС), основанных на использовании элементов искусственного интеллекта. Экспертные системы дают возможность менеджеру или специалисту получать консультации экспертов по любым проблемам, на основе которых этими системами накоплены знания.

Под искусственным интеллектом (ИИ) обычно понимают способности компьютерных систем к таким действиям, которые назывались бы интеллектуальными, если бы исходили от человека. Чаще всего здесь имеются в виду способности, связанные с человеческим мышлением. Работы в области искусственного интеллекта не ограничиваются экспертными системами. Они также включают в себя создание роботов, систем, моделирующих нервную систему человека, его слух, зрение, обоняние, способность к обучению.

Решение специальных задач требует специальных знаний. Главная идея использования технологии экспертных систем заключается в том, чтобы получить от эксперта его знания и, загрузив их в память компьютера, использовать всякий раз, когда в этом возникнет необходимость. Являясь одним из основных приложений искусственного интеллекта, экспертные системы представляют собой компьютерные программы, трансформирующие опыт экспертов в какой-либо области знаний в форму эвристических правил. На практике ЭС используются прежде всего как системы-советчики в тех ситуациях, где специалист сомневается в выборе правильного решения. Экспертные знания, хранящиеся в памяти системы, более глубокие и полные, чем соответствующие знания пользователя.

ЭС находят распространение при решении задач с принятием решений в условиях неопределенности (неполноты) для распознавания образов, в прогнозировании, диагностике, планировании, управлении, конструировании и т.д.

Типичная экспертная система состоит из решателя (интерпретатора), БД (базы данных), БЗ (базы знаний), компонентов приобретения знаний, объяснительного и диалогового компонентов.

БД предназначена для хранения исходных и промежуточных данных, используемых для решения задач, фактографических данных.

Решатель, используя исходные данные из БД и знания из Б3, обеспечивает решение задач для конкретных ситуаций.

Компонент приобретения знаний автоматизирует процесс наполнения Б3.

Объяснительный компонент объясняет, как система получила решение задачи (или почему не получила) и какие знания она при этом использовала. Диалоговый компонент обеспечивает диалог между экспертной системой и пользователем в процессе решения задачи и приобретения знаний.

Экспертные системы создаются для решения разного рода задач профессиональной деятельности человека, и в зависимости от этого выполняют разные функции.

2.6.1   Типы экспертных систем

Можно назвать несколько типов современных экспертных систем.

1)          Экспертные системы первого поколения. Предназначены для решения хорошо структурированных задач, требующих небольшого объема эмпирических знаний. Сюда относятся классификационные задачи и задачи выбора из имеющегося набора вариантов.

2)          Оболочки ЭС. Имеют механизм ввода-вывода, но Б3 пустая. Требуется настройка на конкретную предметную область. Знания приобретаются в процессе функционирования ЭС, способной к самообучению.

3)          Гибридные ЭС. Предназначены для решения различных задач с использованием Б3. Это задачи с использованием методов системного анализа, исследования операций, математической статистики, обработки информации. Пользователь имеет доступ к объективизированным знаниям, содержащимся в Б3 и пакетах прикладных программ.

4)          Сетевые ЭС. Между собой связаны несколько экспертных систем. Результаты решения одной из них являются исходными данными для другой системы. Эффективны при распределенной обработке информации.

При разработке экспертных систем должны участвовать: эксперт той предметной области, задачи которой будет решать система; инженер по знаниям - специалист по разработкам систем; программист - специалист по разработке инструментальных средств. Эксперт определяет знания, то есть описывает предметную область в виде совокупности данных и правил, обеспечивает полноту и правильность введенных в экспертную систему знаний. Данные определяют объекты, их характеристики и значения. Правила указывают на способы манипулирования данными.

Инженер по знаниям помогает эксперту: выявить и структурировать знания, необходимые для функционирования экспертной системы; осуществить выбор инструментальных средств, которые наиболее эффективны для решения задач в данной предметной области; указать способы представления знаний. Программист разрабатывает инструментальную среду, включающую все компоненты экспертной системы, производит ее сопряжение с другими существующими системами.

2.6.2   Виды знаний

1)    Понятийные знания. Это набор понятий, которыми пользуется ЛПР, работающий в некоторой области интеллектуальной, управляющей деятельности, а также свойства и взаимосвязи этих понятий. Эта категория знаний в основном вырабатывается в сфере фундаментальных наук.

2)    Конструктивные знания (близкие к понятийным знаниям).Это знания о структуре и взаимодействии частей различных объектов. Они в основном составляют содержание технических, прикладных наук. К примеру, если взять программирование, то понятийное знание - знание о структуре операторов, данных, языка программирования. Конструктивное знание - это знание об устройстве конкретных программ, о типичных алгоритмах.

3)    Процедурные знания. К ним относятся методические правила решения различных задач, с которыми ЛПР уже сталкивался и их решать. В производственной сфере аналогом процедурных знаний являются технологические знания различных производственных процессов. Процедурные знания - это опыт интеллектуальной, управляющей деятельности ЛПР в определенной предметной области.

4)    Фактографические знания. Они включают в себя количественные и качественные характеристики конкретных объектов, явлений и их элементов. Их накопление ведется в виде таблиц, справочников, файлов, БД.

2.6.3   Способы формализованного представления знаний в БЗ

Формализованное представление знаний в информационных технологиях управления в виде интеллектуальных систем является первичным. Рассмотрим распространенные способы их формализованного представления.

1)          Представление знаний продукционными правилами. Продукционные правила представляют знания в форме ЕСЛИ - ТО. Системы, использующие представления знаний продукционными правилами, называются продукционными. Это самый наглядный и простой способ. В таких системах представления знаний имеются средства, позволяющие использовать в данных и правилах нечеткую информацию с определенной вероятностью, называемой фактором уверенности.

2)          Логика предикатов (раздел математической логики). Константы и переменные определяют отдельные объекты и обозначаются буквами или набором букв (U, V, W, X, Y). Последовательность из n констант или переменных (n - конечно, n > 1) называется функцией. Атомарным предикатом называется последовательность из n сущностей и понятий, описанных константами, переменными или функциями.

Предикат принимает одно из двух значений: истина или ложь. Предикат, в котором все переменные, константы и функции связаны между собой, называется предложением. Предложения используются для представления знаний. Логика предикатов обеспечивает высокий уровень модульности знаний (представляет их как единое целое в определенной предметной области) и позволяет выяснить, имеются или отсутствуют противоречия между новыми и уже существующими знаниями. Но чрезмерный уровень формализации представления знаний, трудность их прочтения снижают эффективность обработки. Кроме этого, в логике предикатов все отношения описываются предикатами, что не позволяет при компьютерной обработке полностью отразить свойства структуры данных. Для программирования используется язык логического типа ПРОЛОГ.

3)          Модель доски объявлений. Модель представляется как совокупность отдельных проблем, каждая из которых составляет отдельное множество знаний. Все множества модели используются согласованно как единое целое и управляются через общую рабочую область памяти, называемую доской объявлений. Отдельное множество знаний называется источником знаний (ИЗ), и каждый ИЗ строится как продукционная система.

4)          Семантические сети. Знания можно рассматривать как отношения между понятиями и сущностями, являющимися конкретными объектами реального мира. Понятия и отношения можно представить в виде семантической сети, состоящей из вершин и дуг. В вершинах располагаются понятия, а направленные связи между вершинами соответствуют различного рода отношениям между этими понятиями. Семантические сети могут быть выполнены обучаемыми и растущими, что означает возможность автоматического добавления в сеть новых узлов по мере появления в опыте ее использования новых понятий, а также увеличение весовых коэффициентов, соответствующих дугам. В процессе ее обучения между существующими узлами также могут устанавливаться дополнительные связи.

5)          Фреймовые системы. Фреймы рассматриваются как структура описания отдельной сущности или понятия. Они могут быть в виде их совокупностей, представляемых как отдельное множество знаний, относящихся к одному объекту. Каждый фрейм состоит из множества элементов, называемых слотами, которые в свою очередь представляются определенной структурой данных. Каждый фрейм и слот имеют имя, единственное во всей фреймовой системе. В значение слота содержит конкретную информацию.

Фреймы не связаны в сеть. Управление большим числом источников знаний выполняется самим пользователем путем вызова нужных процедур (в других способах это выполняет сама система). Для поиска нужного объекта задаются значения слотов. Если данные удовлетворяют условиям всех слотов, то объект считается найденным.

Информация о работе Информационные технологии