Информационные технологии

Автор работы: Пользователь скрыл имя, 14 Апреля 2012 в 17:24, дипломная работа

Краткое описание

Технология при переводе с греческого (techne) означает искусство, мастерство, умение, а это не что иное, как процессы.

Под процессом следует понимать определенную совокупность действий, направленных нa достижение поставленной цели. Процесс должен определяться выбранной человеком стратегией и реализоваться с помощью совокупности различных средств и методов.

Под технологией материального производства понимают совокупность средств и методов обработки, изготовления, изменения состояния, свойств, формы сырья или материала. Технология изменяет качество или первоначальное состояние материи в целях получения продукта.

Информация является одним из ценнейших ресурсов общества, наряду с такими традиционными материальными видами ресурсов, как нефть, газ, полезные ископаемые и др., а значит, процесс ее переработки по аналогии с процессами переработки материальных ресурсов можно воспринимать как технологию. Тогда справедливо следующее определение.

Информационная технология (ИТ) - совокупность средств и методов сбора, обработки и передачи данных (первичной информации) для получения информации нового качества о состоянии объекта, процесса или явления (информационного продукта).

Содержание работы

Раздел 1. ПОНЯТИЕ ИНФОРМАЦИОННОЙ ТЕХНОЛОГИИ_ 3

1.1 Содержание информационной технологии_ 3

1.1.1 Определение информационной технологии_ 3

1.1.2 Инструментарий информационной технологии_ 4

1.1.3 Информационная технология и информационная система 5

1.2 Этапы развития информационных технологий_ 6

1.3 Особенности новых информационных технологий_ 8

1.4 Проблемы использования информационных технологий_ 9

Раздел 2. ВИДЫ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ_ 10

2.1 Общая классификация видов информационных технологий_ 10

2.1.1 Структура управления организацией_ 10

2.1.2 Классификация видов информационных технологий_ 12

2.2 Информационная технология обработки данных_ 16

2.3 Информационная технология управления_ 19

2.4 Автоматизация офисной деятельности_ 21

2.5 Информационная технология поддержки принятия решений_ 25

2.6 Экспертные системы_ 29

2.6.1 Типы экспертных систем_ 30

2.6.2 Виды знаний_ 31

2.6.3 Способы формализованного представления знаний в БЗ_ 32

2.6.4 Области применения ЭС_ 33

Раздел 3. ОРГАНИЗАЦИЯ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ_ 36

3.1 Модели информационных процессов передачи, обработки, накопления данных_ 36

3.1.1 Обобщенная схема технологического процесса обработки информации 36

3.1.2 Сбор и регистрация информации_ 37

3.1.3 Передача информации_ 40

3.1.4 Обработка информации_ 41

3.1.5 Хранение и накопление информации_ 43

3.2 Системный подход к решению функциональных задач и к организации информационных процессов_ 45

Раздел 4. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В РАЗЛИЧНЫХ ОБЛАСТЯХ ДЕЯТЕЛЬНОСТИ_ 48

4.1 Информационные технологии в системах организационного управления 48

5.3.1 ЭВМ при выборе решений в области технологии, организации, планирования и управления производством_ 48

5.3.2 Возможности использования новых информационных технологий в системах организационного управления 49

4.2 Информационные технологии в обучении_ 52

4.3 Автоматизированные системы научных исследований_ 54

4.4 Системы автоматизированного проектирования 55

4.5 Геоинформационные системы и технологии_ 56

Раздел 5. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В РАСПРЕДЕЛЕННЫХ СИСТЕМАХ 59

5.1 Технологии распределенных вычислений (РВ) 59

5.2 Распределенные базы данных_ 61

5.3 Технологии и модели "Клиент-сервер" 63

5.3.1 Модель файлового сервера 64

5.3.2 Модель удаленного доступа к данным_ 65

5.3.3 Модель сервера базы данных_ 67

5.3.4 Модель сервера приложений_ 68

5.4 Технологии объектного связывания данных_ 69

5.5 Технологии реплицирования данных_ 72

Раздел 6. ТЕХНОЛОГИИ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ 75

6.1 Понятие о компьютерном математическом моделировании. 75

6.1.1 Общие сведения о компьютерном математическом моделировании 75

6.1.2 Классификация математических моделей_ 75

6.2 Этапы, цели и средства компьютерного математического моделирования 77

6.2.1 Моделирования случайных процессов 80

6.2.2 Особенности имитационного моделирования производственных систем 81

Раздел 7. ТЕХНОЛОГИИ СОЗДАНИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ_ 83

7.1 Общая характеристика технологии создания программного обеспечения 83

7.2 Современные методы и средства разработки программного обеспечения 87

7.1.1 Современные методы разработки ПО_ 87

7.1.2 Инструментарий технологии программирования 91

7.1.3 Средства для создания приложений_ 91

7.1.4 CASE-технологии_ 94

7.3 Языки и системы программирования 95

7.3.1 Развитие языков программирования 95

7.3.2 Современные системы программирования 99

7.4 Архитектура программных систем_ 101

Содержимое работы - 1 файл

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ.doc

— 569.00 Кб (Скачать файл)

2.6.4             Области применения ЭС

ЭС в задачах интерпретации, как правило, используют информацию от датчиков для описания ситуации. В качестве примера приведем интерпретацию показаний измерительных приборов на химическом заводе для определения состояния процесса. Интерпретирующие системы имеют дело не с четкими символьными представлениями проблемной ситуации, а непосредственно с реальными данными. Они сталкиваются с затруднениями, которых нет у систем других типов, потому что им приходится обрабатывать информацию зашумленную, недостаточную, неполную, ненадежную или ошибочную. Им необходимы специальные методы регистрации характеристик непрерывных потоков данных, сигналов или изображений и методы их символьного представления.

Интерпретирующие ЭС могут обработать разнообразные виды данных. Например, системы анализа сцен и распознавания речи, используя естественную информацию, - в одном случае визуальные образы, в другом - звуковые сигналы, - анализируют их характеристики и понимают их смысл. Интерпретация в области химии использует данные дифракции рентгеновских лучей, спектрального анализа или ядерно-магнитного резонанса для вывода химической структуры веществ. Интерпретирующая система в геологии использует каротажное зондирование - измерение проводимости горных пород в буровых скважинах и вокруг них, - чтобы определить подповерхностные геологические структуры. Медицинские интерпретирующие системы используют показания следящих систем (например, значения пульса, кровяного давления), чтобы установить диагноз или тяжесть заболевания. Наконец, в военном деле интерпретирующие системы используют данные от радаров, радиосвязи и сонарных устройств, чтобы оценить ситуацию и идентифицировать цели.

ЭС в задачах прогнозирования определяют вероятные последствия заданных ситуаций. Примерами служат прогноз ущерба урожаю от некоторого вида вредных насекомых, оценивание спроса на нефть на мировом рынке в зависимости от складывающейся геополитической ситуации и прогнозирование места возникновения следующего вооруженного конфликта на основании данных разведки. Системы прогнозирования иногда используют имитационное моделирование, т.е. программы, которые отражают причинно-следственные взаимосвязи в реальном мире, чтобы сгенерировать ситуации или сценарии, которые могут возникнуть при тех или иных входных данных. Эти возможные ситуации вместе со знаниями о процессах, порождающих эти ситуации, образуют предпосылки для прогноза.

ЭС в задачах диагностики используют описания ситуаций, характеристики поведения или знания о конструкции компонент, чтобы установить вероятные причины неправильного функционирования диагностируемой системы. Примерами служат: определение причин заболевания по симптомам, наблюдаемым у пациентов; локализация неисправностей в электронных схемах и определение неисправных компонент в системе охлаждения ядерных реакторов. Диагностические системы часто являются консультантами, которые не только ставят диагноз, но также помогают в отладке. Они могут взаимодействовать с пользователем, чтобы оказать помощь при поиске неисправностей, а затем предложить порядок действий по их устранению. Медицина представляется вполне естественной областью для диагностирования, и действительно, в медицинской области было разработано больше диагностических систем, чем в любой другой отдельно взятой предметной области.

ЭС, применяемые в области проектирования, разрабатывают конфигурации объектов с учетом набора ограничений, присущих проблеме. Учитывая то, что проектирование столь тесно связано с планированием, многие проектирующие системы содержат механизмы разработки и уточнения планов для достижения желаемого проекта. Наиболее часто встречающиеся области применения планирующих ЭС - химия, электроника и военное дело.

С, которые используются для решения задач наблюдения, сравнивают действительное поведение с ожидаемым поведением системы. Примерами могут служить слежение за показаниями измерительных приборов в ядерных реакторах с целью обнаружения аварийных ситуаций или оценку данных мониторинга больных, помещенных в блоки интенсивной терапии. Наблюдающие ЭС подыскивают наблюдаемое поведение, которое подтверждает их ожидания относительно нормального поведения или их предположения о возможных отклонениях. Наблюдающие ЭС по самой своей природе должны работать в режиме реального времени.

ЭС в задачах отладки находят рецепты для исправления непра­вильного поведения устройств. Примерами могут служить настройка компьютерной системы с целью преодолеть некоторый вид затруднений в ее работе; выбор типа обслуживания, необходимого для устранения неисправностей в телефонном кабеле; выбор ремонтной операции для исправления известной неисправности в насосе.

ЭС в задачах ремонта аппаратуры следуют плану, который предписывает некоторые рецепты восстановления. Примером является настройка масс-спектрометра, т.е. установка ручек регулировки прибора в положение, обеспечивающее достижение оптимальной чувствительности, совместимой с правильным отношением величин пиков и их формы. Пока что было разработано очень мало ремонтных ЭС отчасти потому, что необходимость фактического выполнения ремонтных процедур на объектах реального мира дополнительно усложняет задачу. Ремонтным системам также необходимы диагностирующие, отлаживающие и планирующие процедуры для производства ремонта.

ЭС в области обучения подвергают диагностике, "отладке" и исправлению ("ремонту") поведение обучаемого. В качестве примеров приведем обучение студентов отысканию неисправностей в электрических цепях, обучение военных моряков обращению с двигателем на корабле и обучение студентов-медиков выбору антимикробной терапии. Обучающие системы создают модель того, что обучающийся знает и как он эти знания применяет к решению проблемы. Системы диагностируют и указывают обучающемуся его ошибки, анализируя модель и строя планы исправлений указанных ошибок. Они исправляют поведение обучающихся, выполняя эти планы с помощью непосредственных указаний обучающимся.

ЭС в задачах управления адаптивно руководят поведением системы в целом. Примерами служат управление производством и распределением компьютерных систем или контроль за состоянием больных при интенсивной терапии. Управляющие ЭС должны включать наблюдающие компоненты, чтобы отслеживать поведение объекта на протяжении времени, но они могут нуждаться также и в других компонентах для выполнения любых или всех из уже рассмотренных типов задач: интерпретации, прогнозирования, диагностики, проектирования, планирования, отладки, ремонта и обучения. Типичная комбинация задач состоит из наблюдения, диагностики, отладки, планирования и прогноза.


 

Раздел 3.       ОРГАНИЗАЦИЯ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ

3.1      Модели информационных процессов передачи, обработки, накопления данных

3.1.1    Обобщенная схема технологического процесса обработки информации

При производстве информационного продукта исходный информационный ресурс в соответствии с поставленной задачей подвергается в определенной последовательности различным преобразованиям. Динамика этих преобразований отображается в протекающих при этом информационных процессах. Таким образом, информационный процесс - это процесс преобразования информации. В результате информация может изменить и содержание, и форму представления.

Управляющие воздействия формируются на основе накопленной и функционирующей в системе управления информации, а также поступающих по каналам прямой и обратной связи сведений из внешней среды.

Таким образом, важнейшая функция любой системы управления - получение информации, выполнение процедур по ее обработке с помощью заданных алгоритмов и программ, формирование на основе полученных сведений управленческих решений, определяющих дальнейшее поведение системы.

Поскольку информация фиксируется и передается на материальных носителях, необходимы действия человека и работа технических средств по восприятию, сбору информации, ее записи, передаче, преобразованию, обработке, хранению, поиску и выдаче. Эти действия обеспечивают нормальное протекание информационного процесса и входят в технологию управления. Они реализуются технологическими процессами обработки данных с использованием электронных вычислительных машин и других технических средств.

Фазы преобразования информации в информационной технологии достаточно многочисленны. Однако если провести структуризацию технологии, обобщенная схема технологического процесса обработки информации может быть представлена схемой, показанной на рис. 3.1.

Рис.3.1 — Обобщенная схема технологического процесса обработки информации

При обработке данных формируются четыре основных информационных процесса: сбор и регистрация, обмен, обработка, накопление и хранение информации. Рассмотрим их модели.

3.1.2    Сбор и регистрация информации

Сбор и регистрация информации происходят по-разному и в различных объектах.

Процесс перевода информации в выходные данные в технологических системах управления может быть полностью автоматизирован, так как для сбора информации о состоянии производственной линии применяются разнообразные электрические датчики, которые уже по своей природе позволяют проводить преобразования физических параметров, вплоть до превращения их в данные, записываемые на машинных носителях информации, без выхода на человеческий уровень представления. Это оказывается возможным благодаря относительной простоте и однозначности физической информации, снимаемой датчиками (давление, температура, скорость и т.п.).

В организационно-экономических системах управления информация, осведомляющая человека о состоянии объекта управления семантически сложна, разнообразна и ее сбор не удается автоматизировать. Поэтому в таких системах информационная технология на этапе превращения исходной (первичной) информации в данные в основе своей остается ручной. На рис.3.2 приведена последовательность фаз процесса преобразования информации в данные в информационной технологии организационно-экономических систем управления.

Рис.3.2 - Процесс преобразования информации в данные

Сбор информации состоит в том, что поток осведомляющей информации, поступающей от объекта управления, воспринимается человеком и переводится в документальную форму (записывается на бумажный носитель информации). Составляющими этого потока могут быть показания приборов (например, пробег автомобиля по спидометру), накладные, акты, ордера, ведомости, журналы, описи и т.д.

Для перевода потока осведомляющей информации в автоматизированный контур информационной технологии необходимо собранную информацию передать в места ее ввода в компьютер, так как часто пункты получения первичной информации от них пространственно удалены. Передача осуществляется, как правило, традиционно, с помощью курьера, телефона.

Собранная информация для ввода должна быть предварительно подготовлена, поскольку модель предметной области, заложенная в компьютер, накладывает свои ограничения на состав и организацию вводимой информации. В современных информационных системах ввод информации осуществляется по запросам программы, отображаемым на экране дисплея, и часто дальнейший ввод приостанавливается, если оператором проигнорирован какой-либо важный запрос. Очень важными на этапах подготовки информации и ввода являются процедуры контроля.

Контроль подготовленной и вводимой информации направлен на предупреждение, выявление и устранение ошибок, которые неизбежны в первую очередь из-за так называемого "человеческого фактора". Человек устает, его внимание может ослабнуть, кто-то может его отвлечь - в результате возникают ошибки. Ошибки при сборе данных и подготовке информации могут быть и преднамеренными. Любые ошибки приводят к искажению вводимых данных, к их недостоверности, а значит, к неверным результатам обработки и в конечном итоге к ошибкам в управлении системой. При контроле собранных данных и подготовленной информации применяют совокупность приемов, как ручных, так и формализованных, направленных на обнаружение ошибок.

Вообще процедуры контроля полноты и достоверности информации и данных используются при реализации информационных процессов повсеместно и могут быть подразделены на визуальные, логические и арифметические.

Визуальный метод широко используется на этапе сбора и подготовки начальной информации и является ручным. При визуальном методе производится зрительный просмотр документа в целях проверки полноты, актуальности, подписей ответственных лиц, юридической законности и т.д.

Логический и арифметический, являясь автоматизированными методами, применяются на последующих этапах преобразования данных.

Логический метод контроля предполагает сопоставление фактических данных с нормативными или с данными предыдущих периодов обработки, проверку логической непротиворечивости функционально-зависимых показателей и их групп и т.д.

Арифметический метод контроля включает подсчет контрольных сумм по строкам и столбцам документов, имеющих табличную форму, контроль по формулам, признакам делимости или четности, балансовые методы, повторный ввод и т.п.

Для предотвращения случайного или намеренного искажения информации служат и организационные, и специальные мероприятия. Это четкое распределение прав и обязанностей лиц, ответственных за сбор, подготовку, передачу и ввод информации в системе информационной технологии. Это и автоматическое протоколирование ввода, и обеспечение санкционированного доступа в контур ИТ.

В настоящее время в нашей стране, как и во всем мире, персональные компьютеры все шире применяются на рабочих местах служащих, ответственных за сбор, подготовку и предварительный контроль первичной информации. В этом случае используются автоматизированные подготовка и контроль собранной необработанной информации и, таким образом, фазы подготовки и ввода объединяются.

Ввод первоначальной информации при создании информационной технологии в организационно-экономической системе в конечном итоге является ручным - пользователь ЭВМ "набирает" данные (алфавитно-цифровые) на клавиатуре, визуально контролируя правильность вводимых символов по отображению на экране дисплея. Каждое нажатие клавиши - это преобразование символа, изображенного на ней, в электрический двоичный код, т.е. в машинные данные. Этап ввода - заключительный этап процесса преобразования исходной информации в машинные данные. Конечно, сейчас есть, помимо клавиатуры, и другие устройства ввода, позволяющие убыстрить и упростить этот трудоемкий и изобилующий ошибками этап, например сканеры или устройства ввода с голоса. Однако указанные устройства, особенно последние, далеки от совершенства и имеют довольно высокую стоимость.

Для решения задач ИТ, помимо ввода осведомляющей информации об объекте управления, необходимо также подготавливать и вводить информацию о структуре и содержании предметной области (т.е. модель объекта управления), а также информацию о последовательности и содержании процедур технологических преобразований для решения поставленных задач (т.е. алгоритмическую модель). Суть подготовки информации такого вида состоит в написании программ и описании структур и данных на специальных формальных языках программирования. Этап разработки и ввода программ в настоящее время автоматизирован благодаря использованию развивающихся многофункциональных систем программирования. С их помощью существенно облегчаются процесс создания программ, их отладка и ввод. Тем не менее, сам процесс моделирования, т.е. разработки моделей предметной области решаемых задач и их алгоритмической реализации, остается творческим и на этапе разработки информационных технологий в своей основе практически неавтоматизируем.

Информация о работе Информационные технологии