Автор работы: Пользователь скрыл имя, 12 Ноября 2011 в 10:05, курсовая работа
Целью исследования является рассмотрение особенностей теории общего равновесия, а так же оценка относительных цен в России на современном этапе. В рамках достижения поставленной цели были поставлены следующие задачи:
1. Изучить модели равновесия;
2. Изучить основные проблемы, связанные с теорией общего равновесия;
3. Проанализировать относительные цены в России за период с 2005 по
2008 гг., как характеристику рыночного равновесия.
Введение………………………………………………………………………….…..3
Глава 1. Понятие, типы и модели равновесия
1.1. Понятие рыночного равновесия и его статическая модель………………….5
1.2.Модель Вальраса..………….....…….……………….…………………………10
1.3. Паутинообразная модель. Существование, стабильность и единственность равновесия……………………………………………………………...…..……….16
1.4. Подходы Вальраса и Маршал…………………….…………………………...19
Глава 2. Равновесие и относительные цены
2.1.Общее равновесие……………………………………………………………...22
2.2. Парето-эффективность и общее равновесие………………………………...24
2.3. Изменение относительных цен в России за 2006-2009гг………….………..31
Заключение………………………………………………………………………….36
Список библиотечной литературы………
В
модели Вальраса общее равновесие -
результат решения системы
Модель является попыткой представить все уравнения, описывающие общее равновесие в хозяйстве, чтобы сравнить число этих уравнений с числом переменных, которые они включают. Если число уравнений будет равно числу переменных, то общее равновесие возможно.
Итак, вообразим себе хозяйство, обладающее следующими характеристиками. На любом рынке этого хозяйства существует совершенная конкуренция. Предполагается также отсутствие внешних эффектов и общественных благ.
В хозяйстве существует m видов потребительских благ, каждое из которых производится в условиях совершенной конкуренции множеством независимых фирм. Каждая фирма максимизирует свою прибыль.
В
хозяйстве имеется n видов ресурсов,
которые находятся в
Таким образом, всего в хозяйстве существует n рынков ресурсов и m рынков потребительских благ. На каждом рынке существуют две переменные - цена и количество. На рынке отдельного блага это Pi и Qi, а на рынке отдельного ресурса - pj и qj. Всего у нас получается 2n + 2m неизвестных.
Определим теперь число уравнений, описывающих хозяйственную систему. Существуют четыре группы уравнений, описывающих различные типы функциональных зависимостей в хозяйстве.Первые две группы описывают равновесие потребителей, вторые две задают равновесие производителей.
1)
Уравнения потребительского
Спрос отдельного потребителя на каждое благо определяется как функция цен всех потребительских благ (P1 ... Pm) и цен всех ресурсов (p1 ... pn). Заметим сразу, что этим подчеркиваются два типа общих взаимосвязей в хозяйстве - зависимость спроса на отдельное благо от цен других благ и от цен ресурсов.
Так как спрос каждого потребителя зависит от этих переменных, можно сказать, что рыночный спрос определяется как сумма индивидуальных спросов:
Qi = f(P1 ... Pm; p1 ... pm), (1.2.1)
где Qi - объем производства блага; f(P1 ... Pm; p1 ... pn) - суммарный спрос всех потребителей на рынке блага i.
Поскольку у нас m рынков благ, мы имеем ровно m таких уравнений спроса.
2) Уравнения предложения ресурсов.
Поскольку
потребители должны также выбрать
объем предложения ресурсов, которыми
они обладают, мы должны записать их
функции предложения. Индивидуальное
предложение ресурса также
qi = φ(P1 ... Pm; p1 ... pn), (1.2.2)
где qj - объем продаж на рынке ресурса j; (P1 ... Pm; p1 ... pn) - функция предложения ресурса j всеми потребителями хозяйства. Поскольку в хозяйстве существует n рынков ресурсов, имеем ровно n таких функций предложения.
Заметим, что один вектор цен (P1 ... Pm; p1 ... pn) задает объемы спроса и предложения сразу на всех рынках благ и ресурсов, так как выбор отдельного потребителя заключается в одновременном определении своего спроса и предложения на всех рынках хозяйства при заданных ценах. Пропорциональное изменение всех цен не вызовет изменения спроса и предложения на всех рынках. Например, если и цены благ, и цены ресурсов повысятся ровно в 2 раза, ни у одного потребителя не будет стимула для изменения своего поведения.
3)
Уравнения равновесия в
Мы не можем записать функции предложения на рынке каждого блага на основе функции предложения отдельной фирмы в силу предположения о фиксированных коэффициентах. Ведь фиксированные коэффициенты означают отсутствие экономии от масштаба и отсутствие убывающей предельной производительности. Функция предложения любого блага в этой ситуации должна иметь бесконечную эластичность, а размер фирмы оказывается неопределен.
Но
в этой ситуации мы можем проигнорировать
функции предложения как
Pi = p1ai1 + p2ai2 +...+ pnain, (1.2.3)
т. е. цена блага i распадается на затраты по приобретению ресурсов для производства единицы блага. Поскольку каждое благо должно производиться при аналогичных условиях, мы имеем m таких уравнений. Здесь также существенно лишь соотношение цен: их пропорциональное изменение не нарушает равенства (1.2.3).
4)
Уравнения спроса на ресурсы.
При определении спроса на
ресурсы мы сталкиваемся с
той же проблемой, что в
Поэтому мы можем записать:
qj = a1jQ1 + a2jQ2 +...+ amQm, (1.2.4)
где Qi - объем производства блага i.
Поскольку это равенство
Поскольку в данном случае мы анализируем относительные цены и абстрагируемся от их абсолютных значений, для измерения цен нам необходимо выбрать одно благо, которое будет служить счетной единицей. Цена этого блага принимается равной единице и поэтому не является неизвестной. Таким образом, число неизвестных равно 2n + 2m - 1.
Теперь мы можем подвести итог. Всего в нашей системе имеется 2n + 2m уравнений и 2n + 2m - 1 неизвестных. Как видно, неизвестных меньше, чем уравнений, и это говорит о том, что одно из уравнений оказывается лишним. Если нам удастся исключить его из системы, доказав его зависимость от остальных, тогда общее равновесие оказывается возможным.
Исключить одно уравнение действительно можно на основе следующего соображения. В условиях общего равновесия весь доход, полученный потребителями от продажи ресурсов, расходуется на рынках потребительских благ. Это значит, что общая стоимость ресурсов должна быть равна общей стоимости благ. Поэтому в условиях общего равновесия, зная цены и количества на всех рынках ресурсов и благ, кроме рынка блага, выбранного в качестве счетной единицы, мы можем рассчитать объем спроса на этом рынке остаточным способом. Поэтому одно из уравнений спроса оказывается зависимым от всех остальных уравнений в системе, и его можно исключить. Остается 2n + 2m - 1 независимых уравнений.
Таким образом, число уравнений оказывается равным числу неизвестных, и это означает возможность достижения общего равновесия в хозяйстве.
Важно рассмотреть другие проблемы, которые будут касаться любой модели общего равновесия.
1.
Достаточность. Необходимость
Таким образом, cуществует единственное состояние общего равновесия с неотрицательными ценами и количествами, если выполняются два условия:
1) существует постоянная или
2) для любого блага существует одно или несколько других благ, находящееся с ним в отношении замещения.
2. Механизм достижения. Для доказательства достижения возможности общего равновесия необходимо определить механизм достижения равновесных цен и объемов на каждом рынке. Сам Вальрас использовал для доказательства достижения равновесия теорию нащупывания, которая заключается в следующем.
Сначала
необходимо ответить на вопрос, будет
ли система двигаться в сторону
равновесных цен и объемов. Это
доказывается "от противного": если
представить себе, что вначале
реализуется некоторый
1.3.Паутинообразная модель. Существование, стабильность и единственность равновесия.
В связи с моделью общего равновесия возникают три основные проблемы: его существования, единственности и стабильности.
Анализ экономического равновесия с точки зрения его устойчивости требует от нас определения динамики изменения цены во времени (динамическая модель). Рассмотрим в качестве примера одну из простейших динамических моделей - паутинообразную модель.
Допустим, что объем спроса зависит от уровня цен текущего периода, тогда как объем предложения - от уровня цен предыдущего периода:
QSt = S(Pt-1), (1.3.1)
где QSt - объем предложения товара в период t; Pt-1 - фактическая цена товара в период t-1.
Рис.1.3.1. Паутинообразная модель
На рис. 1.3.1 линия SS характеризует зависимость объема предложения товара от фактической цены этого товара в предыдущем, периоде. Линия DD характеризует зависимость объема спроса на товар от цены товара в данном, периоде:
QDt = D(Pt), (1.3.2)
где QDt- объем спроса на товар в период t; P - цена товара в период t.
Пусть цена в некоторый начальный период t = 0 была равна P0 , по ней было куплено Q0 единиц товара. Тогда в следующем периоде t = 1 производители выбросят на рынок Q1 единиц товара. Этот объем предложения будет в свою очередь реализован по цене P1 и т. д. Система стремится к положению равновесия в точке с координатами (P', Q'), т. е. равновесие является устойчивым.
Из данного графического анализа можно сделать следующий вывод: зная динамику изменения цены за несколько предшествующих периодов, можно получить гораздо более точное представление о будущих ценах, чем если просто распространять фактическую цену данного периода на следующий период. Простейшая паутинообразная модель является хорошей иллюстрацией динамического подхода к проблеме устойчивости рыночного равновесия, позволяя понять некоторые особенности этого подхода.
Анализ проблем единственности и существования равновесия требует использования сложного математического аппарата, в частности элементов топологии, поэтому ограничимся иллюстрацией этих проблем на примере частичного равновесия с использованием кривых спроса и предложения (левые части рис. 15.13-15.16) и соответствующих им кривых избыточного спроса (правые части рис. 15.13-15.16).
Рис.1.3.2. Равновесие на рынке
На совершенно конкурентном рынке равновесие существует, если при некоторой положительной цене (Р’) объем спроса равен объему предложения (т.Е). В этом случае отсутствует какой-либо (положительный или отрицательный) избыток спроса, а само равновесие можно определить как отсутствие избытка спроса при определенной цене.
Информация о работе Теория равновесия и относительные цены в России на современном этапе