Автор работы: Пользователь скрыл имя, 26 Апреля 2013 в 19:13, шпаргалка
Работа содержит ответы на экзаменационные билеты по дисциплине "Эконометрика".
Помимо классического
метода наименьших квадратов для
определения неизвестных
Построение модели множественной
регрессии в
Посредством процесса стандартизации точкой отсчёта для каждой нормированной переменной устанавливается её среднее значение по выборочной совокупности. При этом в качестве единицы измерения стандартизированной переменной принимается её среднеквадратическое отклонение σ.
Факторная переменная х переводится в стандартизированный масштаб по формуле:
где xij – значение переменной xjв i-том наблюдении;
G(xj) – среднеквадратическое
отклонение факторной
Результативная переменная
у переводится в
где G(y) – среднеквадратическое отклонение результативной переменной у.
Если между исследуемыми переменными в исходном масштабе является линейной, то процесс стандартизации не нарушает этой связи, поэтому стандартизированные переменные будут связаны между собой линейно:
Неизвестные коэффициенты данной функции можно определить с помощью классического метода наименьших квадратов для линейной модели множественной регрессии. В этом случае минимизируется функционал F вида:
В результате минимизации данного функционала получим систему нормальных уравнений, переменными в которой будут являться парные коэффициенты корреляции между факторными и результативной переменной. Такой подход основывается на следующем равенстве:
Система нормальных уравнений для стандартизированной модели множественной регрессии имеет вид:
В связи с тем, что полученная система нормальных уравнений является квадратной (количество уравнений равняется количеству неизвестных переменных), то оценки коэффициентов
можно рассчитать с помощью метода Крамера, метода Гаусса или метода обратных матриц.
Рассчитанные из системы нормальных уравнений β-коэффициенты в стандартизированном масштабе необходимо перевести в масштаб исходных данных по формулам:
Рассмотрим метод Гаусса
решения квадратных систем линейных
уравнений. Суть данного метода заключается
в том, что исходная квадратная система
из n линейных уравнений с n неизвестными
переменными преобразовывают к
треугольному виду. Для этого в
одном и уавнений системы оставляют
все неизвестные переменные. В
другом уравнении сокращают одну
из неизвестных переменных для того,
чтобы число неизвестных стало
(n-1). В следующем уравнении
29. Соизмеримые показатели тесноты связи
К соизмеримым показателям тесноты связи относятся:
1) коэффициенты частной эластичности;
2) стандартизированные частные коэффициенты регрессии;
3) частный коэффициент детерминации.
Если факторные переменные
имеют несопоставимые единицы измерения,
то связь между ними измеряется с
помощью соизмеримых
Коэффициент частной эластичности рассчитывается по формуле:
где
– среднее значение факторной переменной xi по выборочной совокупности,
– среднее значение результативной переменной у по выборочной совокупности;
– первая производная результативной переменной у по факторной переменной х.
Частный коэффициент эластичности
измеряется в процентах и характеризует
объём изменения результативной
переменной у при изменении на
1 % от среднего уровня факторной переменной
xiпри условии постоянства всех
остальных факторных
Для линейной модели регрессии
частный коэффициент
где βi– коэффициент модели множественной регрессии.
Для того чтобы рассчитать
стандартизированные частные
Факторная переменная х переводится в стандартизированный масштаб по формуле:
где xij – значение переменной xj в i-том наблюдении;
G(xj) – среднеквадратическое
отклонение факторной
Результативная переменная
у переводится в
где G(y) – среднеквадратическое отклонение результативной переменной у.
Стандартизированные частные
коэффициенты регрессии характеризуют,
на какую долю своего среднеквадратического
отклонения G(y) изменится результативная
переменная у при изменении факторной
переменной х на величину своего среднеквадратического
отклонения G(x), при условии постоянства
всех остальных факторных
Стандартизированный частный
коэффициент регрессии
Частный коэффициент детерминации используется для характеристики степени косвенного влияния факторной переменной х на результативную переменную у:
где βi– стандартизированный частный коэффициент регрессии;
r(xixj) – коэффициент частной корреляции между факторными переменными xi и xj.
Частный коэффициент детерминации
характеризует, на сколько процентов
вариация результативной переменной вызвана
вариацией i-ой факторной переменной,
включённой в модель множественной
регрессии, при условии постоянства
всех остальных факторных
Стандартизированные частные
коэффициенты регрессии и частные
коэффициенты эластичности могут давать
различные результаты. Это несовпадение
может быть объяснено, например, слишком
большой величиной
30. Частные коэффициенты
корреляции для линейной
Частные коэффициенты корреляции используются для оценки зависимости между результативной переменной и одной из факторных переменных при условии постоянства всех остальных факторных переменных, включённых в модель множественной регрессии. Таким образом, частный коэффициент корреляции позволяет элиминировать влияние на результат всех факторных модельных переменных кроме одной.
Рассчитаем частные
Общий вид модели двухфакторной регрессии:
yi=β0+β1xi+β2zi+εi,
где yi – результативная переменная,
xi – первая факторная переменная;
zi – второй факторная переменная;
β0, β1, β2– неизвестные коэффициенты модели регрессии;
εi – случайная ошибка модели регрессии.
Для определения степени
зависимости между
Коэффициент частной корреляции между результативной переменной yi и факторной переменной xiпри постоянном значении факторной переменой ziрассчитывается по формуле:
Коэффициент частной корреляции между результативной переменной yi и факторной переменной ziпри постоянном значении факторной переменной xi рассчитывается по формуле:
Кроме влияния на результативную переменную, частный коэффициент корреляции позволяет рассчитать степень зависимости между факторными переменными.
Коэффициент частной корреляции между факторной переменной xi и факторной переменной ziпри постоянном значении результативной переменной yi рассчитывается по формуле:
Рассмотренные коэффициенты частной корреляции изменяются в пределах от минус единицы до единицы.
Частные коэффициенты корреляции
также можно рассчитать через
коэффициент множественной
Коэффициент частной корреляции между результативной переменной yi и факторной переменной xi при постоянном значении факторной переменой zi:
где
– множественный коэффициент детерминации двухфакторной модели регрессии.
Данный коэффициент корреляции изменяется в пределах от нуля до единицы.
При проверке значимости частных коэффициентов корреляции выдвигается основная гипотеза о незначимости данных коэффициентов, например:
Н0:ryx/z=0.
Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:
Н1:ryx/z≠0.
Проверка выдвинутых гипотез осуществляется с помощью t-критерия Стьюдента. Критическое значение t-критерия tкрит(а,n-h) определяется по таблице распределения Стьюдента, где а – уровень значимости, (n-h) – число степеней свободы. Для модели двухфакторной регрессии число степеней свободы равно (n-3).
Наблюдаемое значение t-критерия рассчитывается по формуле (на примере частного коэффициента корреляции между результативной переменной yi и факторной переменной xi при постоянном значении факторной переменой zi):
Если |tнабл|≤tкрит, то основная гипотеза не отклоняется, и частный коэффициент корреляции является незначимым. Следовательно, между переменными х и у при постоянном значении переменой z корреляционная связь отсутствует.
Если |tнабл|>tкрит, то основная гипотеза отклоняется в пользу конкурирующей гипотезы с вероятностью совершения ошибки первого рода а. В этом случае можно считать, что между переменными х и у при постоянном значении переменной z существует корреляционная зависимость.
Частные коэффициенты корреляции позволяют сделать вывод об обоснованности включения переменной в модель регрессии. Если значение частного коэффициента корреляции мало или коэффициент незначим, то связь между данной факторной переменной и результативной переменной либо очень слаба, либо вовсе отсутствует, поэтому фактор можно исключить из модели без ущерба для её качества.
31. Частные коэффициенты
корреляции для модели
Частные коэффициенты корреляции
для модели множественной регрессии
с тремя и более факторными
переменными позволяют
Для модели множественной регрессии с тремя факторными переменными рассчитываются частные коэффициенты, как первого, так и второго порядка.
Общий вид модели трёхфакторной регрессии:
yi=β0+β1x1i+β2x2i+β3x3i+εi,
где yi – результативная переменная,
x1i – первая факторная переменная;
x2i – второй факторная переменная;
x3i – третья факторная переменная;
β0,β1,β2,β3 – неизвестные коэффициенты модели регрессии;
εi – случайная ошибка модели регрессии.
Частные коэффициенты корреляции первого порядка для модели трёхфакторной регрессии строятся точно так же, как и для модели двухфакторной регрессии.
Частные коэффициенты корреляции второго порядка для модели трёхфакторной регрессии строятся следующим образом.
Частный коэффициент корреляции
между результативной переменной у
и факторной переменной х1 при
постоянстве факторных
Частный коэффициент корреляции
между результативной переменной у
и факторной переменной х2 при
постоянстве факторных
Частный коэффициент корреляции
между результативной переменной у
и факторной переменной х3 при
постоянстве факторных
Частные коэффициенты корреляции второго порядка построены с использованием частных коэффициентов корреляции первого порядка.
Следовательно, частный коэффициент
корреляции порядка t может быть построен
через частный коэффициент
При анализе модели множественной регрессии с n факторными переменными, частный коэффициент корреляции (n-1) порядка рассчитывается по общей формуле:
Частные коэффициенты корреляции, вычисленные по рекуррентным формулам, изменяются в пределах от минус единицы до плюс единицы.
32. Построение частных
коэффициентов корреляции для
модели множественной
Помимо рекуррентных формул,
которые используются для построения
частных коэффициентов